Hearing loss is the incapability to hear sound, either partially or fully. One potential natural remedy for hearing loss is the use of , commonly known as safflower, contains bioactive compounds, including flavonoids, phenolic acids, and terpenoids, which possess potent antioxidant and anti-inflammatory activities. This study uses network pharmacology to identify the potential therapeutic effects of these compounds on hearing loss.
View Article and Find Full Text PDFA novel, green, efficient, and stable magnetically heterogeneous nanocatalyst was developed by immobilizing butanesulfonic acid (BuSOH) onto the surface of MFeO magnetic nanoparticles (MNPs). The resulting core-shell structure of the MFeO@PDA@BuSOH nanocatalyst was thoroughly characterized using various analytical techniques, including Fourier-Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analysis. A nanocatalyst was used to synthesize 2-benzopyrazine-aminoimidazole hybrid derivatives through a domino multicomponent Knoevenagel-condensation-cyclization reaction (5a-p) in an environmentally friendly manner.
View Article and Find Full Text PDFThe most common primary brain tumor in adults is glioblastoma multiforme (GBM), accounting for 45.2% of all cases. The characteristics of GBM, a highly aggressive brain tumor, include rapid cell division and a propensity for necrosis.
View Article and Find Full Text PDFNano compounds, especially metal-organic frameworks (MOFs), have significant properties. Among the most important properties of these compounds, which depend on their specific surface area and porosity, are biological properties, such as anticancer and antibacterial properties. In this study, a new titanium/BTB metal-organic framework (Ti/BTB-MOF) was synthesized by using titanium nitrate and 1,3,5-Tris(4-carboxyphenyl)benzene (BTB) under microwave radiation.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis.
View Article and Find Full Text PDFOvarian cancer (OC) is a significant contributor to gynecological cancer-related deaths worldwide, with a high mortality rate. Despite several advances in understanding the pathogenesis of OC, the molecular mechanisms underlying its development and prognosis remain poorly understood. Therefore, the current research study aimed to identify hub genes involved in the pathogenesis of OC that could serve as selective diagnostic and therapeutic targets.
View Article and Find Full Text PDFThe discovery of multi-targeted kinase inhibitors emerged as a potential strategy in the therapy of multi-genic diseases, such as cancer, that cannot be effectively treated by modulating a single biological function or pathway. The current work presents an extension of our effort to design and synthesize a series of new quinazolin-4-one derivatives based on their established anti-cancer activities as inhibitors of multiple protein kinases. The cytotoxicity of the new derivatives was evaluated against a normal human cell line (WI-38) and four cancer lines, including HepG2, MCF-7, MDA-231, and HeLa.
View Article and Find Full Text PDFThe current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.
View Article and Find Full Text PDFis a gram-positive bacterium which is associated with different gastrointestinal related infections, and the numbers of cases related to it are continuously increasing in the past few years. Owing to high prevalence and development of resistance towards available antibiotics, it is required to develop new therapeutics to combat infection. The current study was aimed to identify novel phytochemicals that could bind and inhibits the TcdB, an exotoxin which is required for the pathogenesis of bacteria, and hence can be considered as the future drug candidates against .
View Article and Find Full Text PDFTuberculosis (TB) remains as one of the major public health concerns worldwide. A successful TB control and treatment is very challenging, due to continuing emergence of strains resistant to known drugs. Therefore, the development of new drugs with different chemical and biological approaches is necessary to obtain more efficient anti-tubercular therapeutics.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has stressed the global health system to a significant level, which has not only resulted in high morbidity and mortality but also poses a threat for future pandemics. This situation warrants efforts to develop novel therapeutics to manage SARS-CoV-2 in specific and other emerging viruses in general. This study focuses on SARS-CoV2 RNA-dependent RNA polymerase (RdRp) mutations collected from Saudi Arabia and their impact on protein structure and function.
View Article and Find Full Text PDFPresent research work evaluates variation in volatile chemicals profile and biological activities of essential oil (EO) obtained from the leaves of eucalyptus ( Dehnh.) using hydro-distillation (HD) and supercritical fluid extraction (SFE). The yield (1.
View Article and Find Full Text PDFA validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the first-ever simultaneous analysis of neratinib, curcumin and internal standard (imatinib) using acetonitrile as the liquid-liquid extraction medium. On a BEH C18 (100 mm × 2.1 mm, 1.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2021
Carbon nanotubes (CNTs), a versatile nanocarrier for doxorubicin (DOX) delivery had attracted significant attention in drug delivery of pharmaceuticals. Several properties such as high surface area, high drug loading capacity, stability, ease of functionalization, ultrahigh length to diameter ratio and good cellular uptake make them preferred nanocarrier as multipurpose drug delivery system. Several surface properties of CNTs can be easily modified by covalent/noncovalent functionalization, which can make CNTs a profound nanomaterial.
View Article and Find Full Text PDFMiddle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CL) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CL in complex with two covalently bound inhibitors.
View Article and Find Full Text PDFAn efficient process for the preparation of a new ethyl 2-((3-(4-fluorophenyl)-6-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio) acetate () was described. The prepared derivative was synthesized using the S-arylation method. Several analytical techniques, such as NMR, Raman and infrared spectroscopy, were used to characterize this compound.
View Article and Find Full Text PDFThe aim of this work is to evaluate the chemical constituents and potential biological activists of Three fatty acids were isolated using column chromatography and identified as palmitic acid (F1), oleic acid (F2) and stearic acid (F3) in addition to other two steroidal compounds; α-amyrin (A4), and β-sitosterol (A5). Using GC, ten fatty acids were detected the major fatty acid obtained was stearic acid (74.61%) while palmitic acid was the second high percentage (10.
View Article and Find Full Text PDFThe papain-like protease (PL) is vital for the replication of coronaviruses (CoVs), as well as for escaping innate-immune responses of the host. Hence, it has emerged as an attractive antiviral drug-target. In this study, computational approaches were employed, mainly the structure-based virtual screening coupled with all-atom molecular dynamics (MD) simulations to computationally identify specific inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PL, which can be further developed as potential pan-PL based broad-spectrum antiviral drugs.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has affected almost every country in the world by causing a global pandemic with a high mortality rate. Lack of an effective vaccine and/or antiviral drugs against SARS-CoV-2, the causative agent, has severely hampered the response to this novel coronavirus. Natural products have long been used in traditional medicines to treat various diseases, and purified phytochemicals from medicinal plants provide a valuable scaffold for the discovery of new drug leads.
View Article and Find Full Text PDFThe SARS-CoV-2 was confirmed to cause the global pandemic of coronavirus disease 2019 (COVID-19). The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV. In this work, we present a structure-based study to identify potential covalent inhibitors containing a variety of chemical warheads.
View Article and Find Full Text PDFThe recent pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CL) enzyme controls coronavirus replication and is essential for its life cycle. 3CL is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV).
View Article and Find Full Text PDF