Diabetes is an ongoing global problem as it affects health of more than 537 million people around the world. Diabetes leaves many serious complications that affect patients and can cause death if not detected and treated promptly. Some of the complications of diabetes include impaired vascular system, increased risk of stroke, neurological diseases that cause pain and numbness, diseases related to the retina leading to blindness, and other complications affecting kidneys, heart failure, muscle weakness, muscle atrophy.
View Article and Find Full Text PDFBlood disorders are defined as diseases related to the structure, function, and formation of blood cells. These diseases lead to increased years of life loss, reduced quality of life, and increased financial burden for social security systems around the world. Common blood disorder treatments such as using chemical drugs, organ transplants, or stem cell therapy have not yet approached the best goals, and treatment costs are also very high.
View Article and Find Full Text PDFVenous thromboembolism (VTE) is a leading cause of preventable deaths in hospitals, and its incidence is not decreasing despite extensive efforts in clinical and laboratory research. Venous thrombi are primarily formed in the valve pockets of deep veins, where activated monocytes play a crucial role in bridging innate immune activation and hemostatic pathways through the production of inflammatory cytokines, chemokines, and tissue factor (TF) - a principal initiator of coagulation. In the valve pocket inflammation and hypoxia (sustained/intermittent) coexist, however their combined effects on immunothrombotic processes are poorly understood.
View Article and Find Full Text PDFBackground: A comprehensive dissection of the role of microRNAs (miRNAs) in gene regulation and subsequent cell functions requires a specific and efficient knockdown or overexpression of the miRNA of interest; these are achieved by transfecting the cell of interest with a miRNA inhibitor or a miRNA mimic, respectively. Inhibitors and mimics of miRNAs with a unique chemistry and/or structural modifications are available commercially and require different transfection conditions. Here, we aimed to investigate how various conditions affect the transfection efficacy of two miRNAs with high and low endogenous expression, miR-15a-5p and miR-20b-5p respectively, in human primary cells.
View Article and Find Full Text PDFEmbryonic stem cell renewal and differentiation is regulated by metabolites that serve as cofactors for epigenetic enzymes. An increase of α-ketoglutarate (α-KG), a cofactor for histone and DNA demethylases, triggers multilineage differentiation in human embryonic stem cells (hESCs). To gain further insight into how the metabolic fluxes in pluripotent stem cells can be influenced by inactivating mutations in epigenetic enzymes, we generated hESCs deficient for de novo DNA methyltransferases (DNMTs) 3A and 3B.
View Article and Find Full Text PDFOptic atrophy 1 (OPA1), a GTPase at the inner mitochondrial membrane involved in regulating mitochondrial fusion, stability, and energy output, is known to be crucial for neural development: Opa1 heterozygous mice show abnormal brain development, and inactivating mutations in OPA1 are linked to human neurological disorders. Here, we used genetically modified human embryonic and patient-derived induced pluripotent stem cells and reveal that OPA1 haploinsufficiency leads to aberrant nuclear DNA methylation and significantly alters the transcriptional circuitry in neural progenitor cells (NPCs). For instance, expression of the forkhead box G1 transcription factor, which is needed for GABAergic neuronal development, is repressed in OPA1+/- NPCs.
View Article and Find Full Text PDFUnlabelled: SORLA is a neuronal sorting receptor implicated both in sporadic and familial forms of AD. SORLA reduces the amyloidogenic burden by two mechanisms, either by rerouting internalized APP molecules from endosomes to the trans-Golgi network (TGN) to prevent proteolytic processing or by directing newly produced Aβ to lysosomes for catabolism. Studies in cell lines suggested that the interaction of SORLA with cytosolic adaptors retromer and GGA is required for receptor sorting to and from the TGN.
View Article and Find Full Text PDFSORLA/SORL1 is a unique neuronal sorting receptor for the amyloid precursor protein that has been causally implicated in both sporadic and autosomal dominant familial forms of Alzheimer's disease (AD). Brain concentrations of SORLA are inversely correlated with amyloid-β (Aβ) in mouse models and AD patients, suggesting that increasing expression of this receptor could be a therapeutic option for decreasing the amount of amyloidogenic products in affected individuals. We characterize a new mouse model in which SORLA is overexpressed, and show a decrease in Aβ concentrations in mouse brain.
View Article and Find Full Text PDFSorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored.
View Article and Find Full Text PDFObjective: To identify SORL1 risk genotypes that determine receptor protein expression in the human brain.
Design: DNA, RNA, and proteins were extracted from brain autopsies of Alzheimer disease cases and used for SORL1 genotyping, RNA profiling, and SORLA protein quantification, respectively.
Setting: Specimens were provided by the MRC London Brain Bank for Neurodegenerative Diseases and the Netherlands Brain Bank.
Quadrupedal gait in humans, also known as Unertan syndrome, is a rare phenotype associated with dysarthric speech, mental retardation, and varying degrees of cerebrocerebellar hypoplasia. Four large consanguineous kindreds from Turkey manifest this phenotype. In two families (A and D), shared homozygosity among affected relatives mapped the trait to a 1.
View Article and Find Full Text PDF