Microbial adhesion to surfaces is thought to involve physicochemical interactions between the substrate and microbial cells. Understanding the physicochemical aspects involved in the adhesion phenomenon, as a critical step in biofilm formation, is essential to finding ways to prevent their formation and control biocontamination risks. The aim of this study was to investigate the relation between the adhesion behavior of 12 strains isolated from food and their surface hydrophobicities using qualitative ( ) and quantitative (Δ ) approaches.
View Article and Find Full Text PDFThe main aim of this work was to determine the most appropriate materials for the installation of a water system according to the characteristics of the water that passes through it. To this end, we conducted an investigation of the effect of two types of water (SDW: sterile distilled water and STW: sterile tap water) on the properties of bacterial surfaces and the theoretical adhesion of two bacteria (Pseudomonas aeruginosa and Escherichia coli) on six plumbing materials. Contact angle measurements were used to determine the surface energies of bacteria and materials.
View Article and Find Full Text PDFWe aimed to investigate the adhesion of Legionella pneumophila serogroup1 and L. pneumophila serogroup2-15 on glass, galvanized steel, stainless steel, copper, Polyvinyl chloride(PVC), Cross-linked polyethylene(PEX-c) and Polypropylene Random Copolymer(PPR). The surface physicochemical properties of both bacterial cells and materials were estimated through contact angle measurements.
View Article and Find Full Text PDF