The pathogenesis of multiple sclerosis (MS) involves alterations to multiple pathways and processes, which represent a significant challenge for developing more-effective therapies. Systems biology approaches that study pathway dysregulation should offer benefits by integrating molecular networks and dynamic models with current biological knowledge for understanding disease heterogeneity and response to therapy. In MS, abnormalities have been identified in several cytokine-signaling pathways, as well as those of other immune receptors.
View Article and Find Full Text PDFSystems biology has to increasingly cope with large- and multi-scale biological systems. Many successful in silico representations and simulations of various cellular modules proved mathematical modelling to be an important tool in gaining a solid understanding of biological phenomena. However, models spanning different functional layers (e.
View Article and Find Full Text PDFBackground: Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools.
View Article and Find Full Text PDFPredicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms.
View Article and Find Full Text PDFChemical dimerizers are powerful tools for non-invasive manipulation of enzyme activities in intact cells. Here we introduce the first rapidly reversible small-molecule-based dimerization system and demonstrate a sufficiently fast switch-off to determine kinetics of lipid metabolizing enzymes in living cells. We applied this new method to induce and stop phosphatidylinositol 3-kinase (PI3K) activity, allowing us to quantitatively measure the turnover of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its downstream effectors by confocal fluorescence microscopy as well as standard biochemical methods.
View Article and Find Full Text PDFBackground: Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear.
View Article and Find Full Text PDFDown-regulation of receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) is achieved by endocytosis of the receptor followed by degradation or recycling. We demonstrated that in the absence of ligand, increased phosphatidylinositol 3,4,5-trisphosphate (PIP3) concentrations induced clathrin- and dynamin-mediated endocytosis of EGFR but not that of transferrin or G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors. Endocytosis of the receptor in response to binding of EGF resulted in a decrease in the abundance of the EGFR, but PIP3-induced internalization decreased receptor ubiquitination and phosphorylation and resulted in recycling of the receptor to the plasma membrane.
View Article and Find Full Text PDF: Network-based drug discovery aims at harnessing the power of networks to investigate the mechanism of action of existing drugs, or new molecules, in order to identify innovative therapeutic treatments. In this review, we describe some of the most recent advances in the field of network pharmacology, starting with approaches relying on computational models of transcriptional networks, then moving to protein and signaling network models and concluding with "drug networks". These networks are derived from different sources of experimental data, or literature-based analysis, and provide a complementary view of drug mode of action.
View Article and Find Full Text PDFBackground: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing.
View Article and Find Full Text PDFBackground: Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.
Results: To increase the efficiency of model creation, the Path2Models project has automatically generated mathematical models from pathway representations using a suite of freely available software.
Motivation: Web interfaces provide access to numerous biological databases. Many can be accessed to in a programmatic way thanks to Web Services. Building applications that combine several of them would benefit from a single framework.
View Article and Find Full Text PDFMotivation: Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models.
View Article and Find Full Text PDFIn the last 30 years, many of the mechanisms behind signal transduction, the process by which the cell takes extracellular signals as an input and converts them to a specific cellular phenotype, have been experimentally determined. With these discoveries, however, has come the realization that the architecture of signal transduction, the signaling network, is incredibly complex. Although the main pathways between receptor and output are well-known, there is a complex net of regulatory features that include crosstalk between different pathways, spatial and temporal effects, and positive and negative feedbacks.
View Article and Find Full Text PDFPredicting the response of a specific cancer to a therapy is a major goal in modern oncology that should ultimately lead to a personalised treatment. High-throughput screenings of potentially active compounds against a panel of genomically heterogeneous cancer cell lines have unveiled multiple relationships between genomic alterations and drug responses. Various computational approaches have been proposed to predict sensitivity based on genomic features, while others have used the chemical properties of the drugs to ascertain their effect.
View Article and Find Full Text PDFBackground: Tumor classification based on their predicted responses to kinase inhibitors is a major goal for advancing targeted personalized therapies. Here, we used a phosphoproteomic approach to investigate biological heterogeneity across hematological cancer cell lines including acute myeloid leukemia, lymphoma, and multiple myeloma.
Results: Mass spectrometry was used to quantify 2,000 phosphorylation sites across three acute myeloid leukemia, three lymphoma, and three multiple myeloma cell lines in six biological replicates.
Mathematical modelling is increasingly becoming an indispensable tool for the study of cellular processes, allowing their analysis in a systematic and comprehensive manner. In the vast majority of the cases, models focus on specific subsystems, and in particular describe either metabolism, gene expression or signal transduction. Integrated models that are able to span and interconnect these layers are, by contrast, rare as their construction and analysis face multiple challenges.
View Article and Find Full Text PDFGenomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein's DNA-binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families.
View Article and Find Full Text PDFBackground: A standard graphical notation is essential to facilitate exchange of network representations of biological processes. Towards this end, the Systems Biology Graphical Notation (SBGN) has been proposed, and it is already supported by a number of tools. However, support for SBGN in Cytoscape, one of the most widely used platforms in biology to visualise and analyse networks, is limited, and in particular it is not possible to import SBGN diagrams.
View Article and Find Full Text PDFThere is an increasing number of software packages to analyse biological experimental data in the R environment. In particular, Bioconductor, a repository of curated R packages, is one of the most comprehensive resources for bioinformatics and biostatistics. The use of these packages is increasing, but it requires a basic understanding of the R language, as well as the syntax of the specific package used.
View Article and Find Full Text PDFModeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior.
View Article and Find Full Text PDFSummary: Drug versus Disease (DvD) provides a pipeline, available through R or Cytoscape, for the comparison of drug and disease gene expression profiles from public microarray repositories. Negatively correlated profiles can be used to generate hypotheses of drug-repurposing, whereas positively correlated profiles may be used to infer side effects of drugs. DvD allows users to compare drug and disease signatures with dynamic access to databases Array Express, Gene Expression Omnibus and data from the Connectivity Map.
View Article and Find Full Text PDFMathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic).
View Article and Find Full Text PDFBackground: Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce.
View Article and Find Full Text PDFRecent advances in computational biology suggest that any perturbation to the transcriptional programme of the cell can be summarised by a proper 'signature': a set of genes combined with a pattern of expression. Therefore, it should be possible to generate proxies of clinicopathological phenotypes and drug effects through signatures acquired via DNA microarray technology. Gene expression signatures have recently been assembled and compared through genome-wide metrics, unveiling unexpected drug-disease and drug-drug 'connections' by matching corresponding signatures.
View Article and Find Full Text PDFLarge-scale siRNA screenings allow linking the function of poorly characterized genes to phenotypic readouts. According to this strategy, genes are associated with a function of interest if the alteration of their expression perturbs the phenotypic readouts. However, given the intricacy of the cell regulatory network, the mapping procedure is low resolution and the resulting models provide little mechanistic insights.
View Article and Find Full Text PDF