Introduction: The caudal cell mass (CCM) is an aggregate of undifferentiated pluripotent cells and the main player in secondary neurulation. Previous studies have elucidated the dynamic fate of the multipotent cell lineages, with a recent interest in the neuromesodermal progenitors. However, a transcriptomic analysis of the CCM during secondary neurulation has not been performed yet.
View Article and Find Full Text PDFPurpose: Myelomeningocele (MMC) is the representative entity of open neural tube defects resulting from an error during primary neurulation. However, cases of MMC in the region of the secondary neural tube (below the junction of S1 and S2 vertebrae) are sometimes encountered. We aimed to analyze the clinical features of atypical "low-lying" MMC in comparison to the typical MMC and suggest possible pathoembryogenesis.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma (DIPG) is one of the most lethal childhood brain tumors. This tumor is unique because it is detected exclusively in the ventral pons of patients aged between 6 and 7 years, which suggests a developmental nature of its formation. Signal transducer and activator of transcription 3 (STAT3) is a critical molecule for the differentiation of neural stem cells into astrocytes during neurodevelopment.
View Article and Find Full Text PDFThe caudal cell mass (CCM) is known as the main player in secondary neurulation, forming the secondary neural tube (2NT). This suggests that the CCM may have the character of neural progenitor cells. The neural potential of the CCM and the 2NT (CCM + 2NT) was assessed by in vitro culture of neurospheres during Hamburger and Hamilton stages (HH) of secondary neurulation (HH16 to HH32).
View Article and Find Full Text PDFOBJECTIVE There has been no established animal model of syringomyelia associated with lumbosacral spinal lipoma. The research on the pathophysiology of syringomyelia has been focused on Chiari malformation, trauma, and inflammation. To understand the pathophysiology of syringomyelia associated with occult spinal dysraphism, a novel animal model of syringomyelia induced by chronic mechanical compression of the lumbar spinal cord was created.
View Article and Find Full Text PDFPurpose: Terminal myelocystocele (TMC) is thought to be caused by a misstep during secondary neurulation. However, due to the paucity of data on secondary neurulation and the rarity of TMC, proofs of this pathogenetic mechanism are unavailable. Based on a previous observation that TMC resembles a step of secondary neurulation in chick, a closer look was taken at secondary neurulation of chick embryos focusing on the cerebrospinal fluid-filled distal neural tube (terminal balloon).
View Article and Find Full Text PDF