Time-of-flight neutron reflectometry (ToF-NR) performed under different relative humidity conditions demonstrates that polymer brushes constituted by hydrophilic, cyclic macromolecules exhibit a more compact conformation with lower roughness as compared to linear brush analogues, due to the absence of dangling chain ends extending at the polymer-vapor interface. In addition, cyclic brushes feature a larger swelling ratio and an increased solvent uptake with respect to their linear counterparts as a consequence of the increased interchain steric repulsions. It is proposed that differences in swelling ratios between linear and cyclic brushes come from differences in osmotic pressure experienced by each brush topology.
View Article and Find Full Text PDFNanomaterials can intensively scatter and/or reflect radiation. Such processes and materials are of theoretical and practical interest. Here, we study the quasi-specular reflections (QSRs) of cold neutrons (CNs) and the reflections of very cold neutrons (VCNs) from nanodiamond (ND) powders.
View Article and Find Full Text PDFAll-oxide-based synthetic antiferromagnets (SAFs) are attracting intense research interest due to their superior tunability and great potentials for antiferromagnetic spintronic devices. In this work, using the LaCaMnO/CaRuTiO (LCMO/CRTO) superlattice as a model SAF, we investigated the layer-resolved magnetic reversal mechanism by polarized neutron reflectivity. We found that the reversal of LCMO layer moments is mediated by nucleation, expansion, and shrinkage of a magnetic soliton.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2021
Membrane interactions and photooxidative membrane destabilization of titanium dioxide (TiO) nanoparticles were investigated, focusing on the effects of membrane composition, notably phospholipid headgroup charge and presence of cholesterol. For this, we employed a battery of state-of-the-art methods for studies of bilayers formed by zwitterionic palmitoyloleoylphosphatidylcholine (POPC) containing also polyunsaturated palmitoylarachidonoylphosphocholine (PAPC), as well as its mixtures with anionic palmitoyloleoylphosphatidylglycerol (POPG) and cholesterol. It was found that the TiO nanoparticles display close to zero charge at pH 7.
View Article and Find Full Text PDFIn the present study, UV-induced membrane destabilization by TiO (anatase) nanoparticles was investigated by neutron reflectometry (NR), small-angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation (QCM-D), dynamic light scattering (DLS), and ζ-potential measurements for phospholipid bilayers formed by zwitterionic palmitoyloleoylphosphatidylcholine (POPC) containing biologically relevant polyunsaturations. TiO nanoparticles displayed pH-dependent binding to such bilayers. Nanoparticle binding alone, however, has virtually no destabilizing effects on the lipid bilayers.
View Article and Find Full Text PDFWe present a detailed analysis of the in-plane magnetic vector configuration in head-to-head/tail-to-tail stripe domain patterns of nominal 5 µm width. The patterns have been created by He-ion bombardment induced magnetic patterning of a CoFe/IrMn exchange bias thin-film system. Quantitative information about the chemical and magnetic structure is obtained from polarized neutron reflectometry (PNR) and off-specular scattering (OSS).
View Article and Find Full Text PDFThe metastable ε-FeO is known to be the most intriguing ferrimagnetic and multiferroic iron oxide phase exhibiting a bunch of exciting physical properties both below and above room temperature. The present paper unveils the structural and magnetic peculiarities of a few nm thick interface layer discovered in these films by a number of techniques. The polarized neutron reflectometry data suggests that the interface layer resembles GaFeO in composition and density and is magnetically softer than the rest of the ε-FeO film.
View Article and Find Full Text PDFThe depth-resolved chemical structure and magnetic moment of [Formula: see text], thin films grown on Si(1 1 1) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45[Formula: see text] of the surface and in a 25[Formula: see text] substrate-interface region. The reduced moment is related to compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy.
View Article and Find Full Text PDFWe report on a strain-induced and temperature dependent uniaxial anisotropy in VO/Ni hybrid thin films, manifested through the interfacial strain and sample microstructure, and its consequences on the angular dependent magnetization reversal. X-ray diffraction and reciprocal space maps identify the in-plane crystalline axes of the VO; atomic force and scanning electron microscopy reveal oriented rips in the film microstructure. Quasi-static magnetometry and dynamic ferromagnetic resonance measurements identify a uniaxial magnetic easy axis along the rips.
View Article and Find Full Text PDFThe phase evolution and morphology of the solid state FeF2 conversion reaction with Li has been characterized using angle-resolved X-ray photoelectron spectroscopy (ARXPS). An epitaxial FeF2(110) film was grown on a MgF2(110) single crystal substrate and exposed to atomic lithium in an ultra-high vacuum chamber. A series of ARXPS spectra was taken after each Li exposure to obtain depth resolved chemical state information.
View Article and Find Full Text PDFThis review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors.
View Article and Find Full Text PDFA detailed investigation of magnetic impurity-mediated interlayer exchange coupling observed in Cu(0.94)Mn(0.06)/Co multilayers using polarized neutron reflectometry and magnetic x-ray techniques is reported.
View Article and Find Full Text PDF