A practical scale photocatalytic air purifier equipped with a TiO/H-ZSM-5 composite bead filter was demonstrated to be able to effectively remove indoor volatile organic compounds (VOCs) and viruses with sustainable performances under UVA-LED illumination. TiO hybridized with 5 wt% H-ZSM-5 zeolite significantly enhanced its photocatalytic activity for degrading VOCs including formaldehyde, acetaldehyde, and toluene, than bare TiO. H-ZSM-5 provided strong adsorption sites for these compounds, thus accelerating their photocatalytic conversion into CO by adjacent TiO photocatalyst.
View Article and Find Full Text PDFDiamine-functionalized metal-organic frameworks (MOFs) are known as desirable adsorbents that can capture CO even at low pressures, but the humidity instability of bare MOF powders as well as their shaping have not yet adequately addressed for practical applications. Herein, we report an effective synthetic strategy for fabricating millimeter-sized MOF/poly(vinylidene fluoride) (PVDF) composite beads with different amounts of PVDF binders (30, 40, and 50 wt %) via a phase inversion method, followed by the postfunctionalization of 1-ethylpropane-1,3-diamine (epn). Compared with the pristine MOF powder, the diamine-grafted bead, epn-MOF/PVDF40, upon mixing with 40% binder polymers, exhibited a superior long-term performance without structural collapse for up to 1 month.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
Control of indoor CO concentration to a safe level is important to human health. Metal-organic-framework-based adsorbents show superior adsorption performance at moderate CO concentration compared to other solid adsorbents but suffer from low capacities and high regeneration temperature at indoor CO concentrations and poor humidity stability. Herein, we report epn-grafted Mg(dobpdc) (epn = 1-ethylpropane-1,3-diamine) showing a CO capacity of 12.
View Article and Find Full Text PDFPoly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination.
View Article and Find Full Text PDFThe integration of smart IT devices and biochemical assays with optical biosensing technology facilitates the development of efficacious optical biosensors for many practical diagnostic fields, owing to their minimized use of high-technical electronic components and simple operation. Herein, we introduced a simple optical biosensing system based on the specific wavelength filtering principle and count-based analysis method. The developed system uses a smartphone with a paper-based signal guide and a biosensing channel.
View Article and Find Full Text PDFTiO nanotubes (TNT) have a highly ordered open structure that promotes the diffusion of dioxygen and substrates onto active sites and exhibit high durability against deactivation during the photocatalytic air purification. Herein, we synthesized {001} facet-exposed TiO nanotubes (001-TNT) using a new and simple method that can be easily scaled up, and tested them for the photocatalytic removal of volatile organic compounds (VOCs) in both a laboratory reactor and a commercial air cleaner. While the surface of TNT is mainly composed of {101} facet anatase, 001-TNT's outer surface was preferentially aligned with {001} facet anatase.
View Article and Find Full Text PDFHerein, we report an optical sensing platform for mercury ions (Hg) in water based on the integration of Hg-mediated thymine-thymine (T-T) stabilization, a biotinylated stem-loop DNA probe, and a streptavidin-modified retroreflective Janus particle (SA-RJP). Two oligonucleotide probes, including a stem-loop DNA probe and an assistant DNA probe, were utilized. In the absence of Hg, the assistant DNA probe does not hybridize with the stem-loop probe due to their T-T mismatch, so the surface-immobilized stem-loop DNA probe remains a closed hairpin structure.
View Article and Find Full Text PDFMagnesium (Mg) has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs.
View Article and Find Full Text PDFThe utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer.
View Article and Find Full Text PDFTitanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties.
View Article and Find Full Text PDFMagnesium (Mg) and its alloys have gained considerable attention as a promising biomaterial for bioresorbable orthopedic implants, but the corrosion behavior of Mg-based implants is still the major issue for clinical use. In order to improve the corrosion stability and implant-tissue interfaces of these implants, methods for coating Mg have been actively investigated. In this study, poly(ether imide) (PEI)-silica hybrid material was coated on Mg, for the tunable degradation and enhanced biological behavior.
View Article and Find Full Text PDFThe introduction of a protective coating layer to highly corrosive magnesium (Mg) has been proposed as one of the common approaches for improved corrosion resistance of Mg-based implants as load-bearing biomedical applications. However, only few studies have focused on the mechanical stability of the coated Mg under practical conditions where significant deformation of the load-bearing implants is induced during the surgical operation or under physiological environments. Therefore, in this study, we developed a dual coating system composed of an interlayer hydroxyapatite (HA) and a top layer poly-L-lactic acid (PLLA) to improve the coating stability under deformation of Mg alloy (WE43) substrate.
View Article and Find Full Text PDFMagnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response.
View Article and Find Full Text PDFHydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition.
View Article and Find Full Text PDF