MCFD2 and ERGIC-53 form a cargo receptor complex that plays a crucial role in transporting specific glycoproteins, including blood coagulation factor VIII, from the endoplasmic reticulum to the Golgi apparatus. We have demonstrated that MCFD2 recognizes a 10-amino-acid sequence in factor VIII, thereby facilitating its efficient transport. Moreover, the secretion of biopharmaceutical recombinant glycoproteins, such as erythropoietin, can be enhanced by tagging them with this sequence, which we have termed the "passport sequence" (PS).
View Article and Find Full Text PDFMembers of the kingdom , previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of .
View Article and Find Full Text PDFArchaeal cells are typically enveloped by glycosylated S-layer proteins. Archaeal protein glycosylation provides valuable insights not only into their adaptation to their niches but also into their evolutionary trajectory. Notably, thermophilic modify proteins with -glycans that include two GlcNAc units at the reducing end, resembling the "core structure" preserved across eukaryotes.
View Article and Find Full Text PDFImmunoglobulin G (IgG) molecules that bind antigens on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms.
View Article and Find Full Text PDFThis study employed high-speed atomic force microscopy to quantitatively analyze the interactions between therapeutic antibodies and Fcγ receptors (FcγRs). Antibodies are essential components of the immune system and are integral to biopharmaceuticals. The focus of this study was on immunoglobulin G molecules, which are crucial for antigen binding via the Fab segments and cytotoxic functions through their Fc portions.
View Article and Find Full Text PDFIn multidomain proteins, individual domains connected by flexible linkers are dynamically rearranged upon ligand binding and sensing changes in environmental factors, such as pH and temperature. Here, we characterize dynamic domain rearrangements of Lys48-linked ubiquitin (Ub) chains as models of multidomain proteins in which molecular surfaces mediating intermolecular interactions are involved in intramolecular domain-domain interactions. Using NMR and other biophysical techniques, we characterized dynamic conformational interconversions of diUb between open and closed states regarding solvent exposure of the hydrophobic surfaces of each Ub unit, which serve as binding sites for various Ub-interacting proteins.
View Article and Find Full Text PDFThe characterization of residual structures persistent in unfolded proteins is an important issue in studies of protein folding, because the residual structures present, if any, may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the residual structures of the isolated B domain (BDPA) of staphylococcal protein A in 6 M guanidinium chloride. BDPA is a small three-helix-bundle protein, and until recently its folding/unfolding reaction has been treated as a simple two-state process between the native and the fully unfolded states.
View Article and Find Full Text PDFIn photoactivation strategies with bioactive molecules, one-photon visible or two-photon near-infrared light-sensitive caged compounds are desirable tools for biological applications because they offer reduced phototoxicity and deep tissue penetration. However, visible-light-sensitive photoremovable protecting groups (PPGs) reported so far have displayed high hydrophobicity and low uncaging cross sections ( < 50) in aqueous media, which can obstruct the control of bioactivity with high spatial and temporal precision. In this study, we developed hydroxylated thiazole orange (HTO) derivatives as visible-light-sensitive PPGs with high uncaging cross sections ( ≈ 370) in aqueous solution.
View Article and Find Full Text PDFHydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science.
View Article and Find Full Text PDFThe interaction between IgG and Fc gamma receptor IIIa (FcγRIIIa) is essential for mediating immune responses. Recent studies have shown that the antigen binding fragment (Fab) and Fc are involved in IgG-FcγRIII interactions. Here, we conducted bio-layer interferometry (BLI) and isothermal titration calorimetry to measure the kinetic and thermodynamic parameters that define the role of Fab in forming the IgG-FcγRIII complex using several marketed therapeutic antibodies.
View Article and Find Full Text PDFImmunoglobulin G (IgG) adopts a modular multidomain structure that mediates antigen recognition and effector functions, such as complement-dependent cytotoxicity. IgG molecules are self-assembled into a hexameric ring on antigen-containing membranes, recruiting the complement component C1q. In order to provide deeper insights into the initial step of the complement pathway, we report a high-speed atomic force microscopy study for the quantitative visualization of the interaction between mouse IgG and the C1 complex composed of C1q, C1r, and C1s.
View Article and Find Full Text PDFThe human immunodeficiency virus type-1 Reverse Transcriptase (HIV-1 RT) plays a pivotal role in essential viral replication and is the main target for antiviral therapy. The anti-HIV-1 RT drugs address resistance-associated mutations. This research focused on isolating the potential specific DNA aptamers against K103N/Y181C double mutant HIV-1 RT.
View Article and Find Full Text PDFAnhydrobiosis, one of the most extensively studied forms of cryptobiosis, is induced in certain organisms as a response to desiccation. Anhydrobiotic species has been hypothesized to produce substances that can protect their biological components and/or cell membranes without water. In extremotolerant tardigrades, highly hydrophilic and heat-soluble protein families, cytosolic abundant heat-soluble (CAHS) proteins, have been identified, which are postulated to be integral parts of the tardigrades' response to desiccation.
View Article and Find Full Text PDFSecretory-abundant heat-soluble (SAHS) proteins are unique heat-soluble proteins of Tardigrada and are believed to play an essential role in anhydrobiosis, a latent state of life induced by desiccation. To investigate the dynamic properties, molecular dynamics (MD) simulations of a SAHS protein, RvSAHS1, were performed in solution and under dehydrating conditions. For comparison purposes, MD simulations of a human liver-type fatty-acid binding protein (LFABP) were performed in solution.
View Article and Find Full Text PDFWe demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (T ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the T of DMPC.
View Article and Find Full Text PDFSmall-angle neutron scattering (SANS) and small- angle X-ray scattering (SAXS) are powerful techniques for the structural characterization of biomolecular complexes. In particular, SANS enables a selective observation of specific components in complexes by selective deuteration with contrast-matching techniques. In most cases, however, biomolecular interaction systems with heterogeneous oligomers often contain unfavorable aggregates and unbound species, hampering data interpretation.
View Article and Find Full Text PDFThe Fc portion of immunoglobulin G (IgG) promotes defensive effector functions in the immune system by interacting with Fcγ receptors and complement component C1q. These interactions critically depend on N-glycosylation at Asn297 of each C2 domain, where biantennary complex-type oligosaccharides contain microheterogeneities resulting primarily from the presence or absence of non-reducing terminal galactose residues. Crystal structures of Fc have shown that a pair of N-glycans is located between the two C2 domains.
View Article and Find Full Text PDFThe characterization of residual structures persistent in unfolded proteins in concentrated denaturant solution is currently an important issue in studies of protein folding because the residual structure present, if any, in the unfolded state may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the hydrogen/deuterium (H/D)-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride. We employed a dimethylsulfoxide (DMSO)-quenched H/D-exchange NMR technique with the use of spin desalting columns, which allowed us to perform a quick medium exchange from 6 M guanidinium chloride to a quenching DMSO solution.
View Article and Find Full Text PDFBaculovirus-infected silkworms are promising bioreactors for producing recombinant glycoproteins, including antibodies. Previously, we developed a method for isotope labeling of glycoproteins for nuclear magnetic resonance (NMR) studies using silkworm larvae reared on an artificial diet containing N-labeled yeast crude protein extract. Here, we further develop this method by introducing a technique for the expression of isotope-labeled glycoproteins by silkworm pupae, which has several potential advantages relative to larvae-based techniques in terms of production yield, ease of handling, and storage.
View Article and Find Full Text PDFHIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors.
View Article and Find Full Text PDFUbiquitin (Ub) molecules can be enzymatically connected through a specific isopeptide linkage, thereby mediating various cellular processes by binding to Ub-interacting proteins through their hydrophobic surfaces. The Lys48-linked Ub chains, which serve as tags for proteasomal degradation, undergo conformational interconversions between open and closed states, in which the hydrophobic surfaces are exposed and shielded, respectively. Here, we provide a quantitative view of such dynamic processes of Lys48-linked triUb and tetraUb in solution.
View Article and Find Full Text PDFCell membranes contain lateral systems that consist of various lipid compositions and actin cytoskeleton, providing two-dimensional (2D) platforms for chemical reactions. However, such complex 2D environments have not yet been used as a synthetic platform for artificial 2D nanomaterials. Herein, we demonstrate the direct synthesis of 2D coordination polymers (CPs) at the liquid-cell interface of the plasma membrane of living cells.
View Article and Find Full Text PDF