Jak2, a member of the Janus kinase family of nonreceptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated.
View Article and Find Full Text PDFThe discovery of the JAK2V617F mutation in most patients with Ph-negative myeloproliferative neoplasms has led to the development of JAK2 kinase inhibitors. However, JAK2 inhibitor therapy has shown limited efficacy and dose-limiting hematopoietic toxicities in clinical trials. In the present study, we describe the effects of vorinostat, a small-molecule inhibitor of histone deacetylase, against cells expressing JAK2V617F and in an animal model of polycythemia vera (PV).
View Article and Find Full Text PDFThe JAK2V617F mutation has been found in most cases of Ph-negative myeloproliferative neoplasms. Recent studies have shown that expression of Jak2V617F in the hematopoietic compartment causes marked expansion of erythroid progenitors and their transformation to cytokine-independence. To determine if erythroid progenitors are the target cells for induction and propagation of Jak2V617F-evoked myeloproliferative neoplasm, we used a conditional Jak2V617F knock-in mouse and an erythroid-lineage specific EpoRCre line.
View Article and Find Full Text PDF