Quantifying cognitive potential relies on psychometric measures that do not directly reflect cortical activity. While the relationship between cognitive ability and resting state EEG signal dynamics has been extensively studied in children with below-average cognitive performances, there remains a paucity of research focusing on individuals with normal to above-average cognitive functioning. This study aimed to elucidate the resting EEG dynamics in children aged four to 12 years across normal to above-average cognitive potential.
View Article and Find Full Text PDFBackground: Fragile X syndrome (FXS) and autism spectrum disorder (ASD) are neurodevelopmental conditions that often have a substantial impact on daily functioning and quality of life. FXS is the most common cause of inherited intellectual disability (ID) and the most common monogenetic cause of ASD. Previous literature has shown that electrophysiological activity measured by electroencephalogram (EEG) during resting state is perturbated in FXS and ASD.
View Article and Find Full Text PDFElectroencephalography measures are of interest in developmental neuroscience as potentially reliable clinical markers of brain function. Features extracted from electroencephalography are most often averaged across individuals in a population with a particular condition and compared statistically to the mean of a typically developing group, or a group with a different condition, to define whether a feature is representative of the populations as a whole. However, there can be large variability within a population, and electroencephalography features often change dramatically with age, making comparisons difficult.
View Article and Find Full Text PDFHow does the human brain prioritize different visual representations in working memory (WM)? Here, we define the oscillatory mechanisms supporting selection of "where" and "when" features from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation.
View Article and Find Full Text PDFHow does the human brain integrate spatial and temporal information into unified mnemonic representations? Building on classic theories of feature binding, we first define the oscillatory signatures of integrating 'where' and 'when' information in working memory (WM) and then investigate the role of prefrontal cortex (PFC) in spatiotemporal integration. Fourteen individuals with lateral PFC damage and 20 healthy controls completed a visuospatial WM task while electroencephalography (EEG) was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation.
View Article and Find Full Text PDFCovert attention to spatial and color features in the visual field is a relatively new control signal for brain-computer interfaces (BCI). To guide the processing resources to the related visual scene aspects, covert attention should be decoded from human brain. Here, a novel expert system is designed to decode covert visual attention based on the EEG signal provided from 15 subjects during a new task based on a change in lumination to two blue and orange color on the right and the left side of the screen, which is evaluated in two cases of binary and multi-class systems.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2019
Background And Objective: Computer Aided Diagnosis (CAD) techniques have widely been used in research to detect the neurological abnormalities and improve the consistency of diagnosis and treatment in medicine. In this study, a new CAD system based on EEG signals was developed. The motivation for the development of the CAD system was to diagnose multiple sclerosis (MS) disease during covert visual attention tasks.
View Article and Find Full Text PDF