Introduction: Targeted liposomal systems for cancer intention have been recognized as a specific and robust approach compared to conventional liposomal delivery systems. Cancer cells have a unique microenvironment with special over-expressed receptors on their surface, providing opportunities for discovering novel and effective drug delivery systems using active targeting.
Areas Covered: Smartly targeted liposomes, responsive to internal or external stimulations, enhance the delivery efficiency by increasing accumulation of the encapsulated anti-cancer agent in the tumor site.
Enoxaparin has been widely used as a choice drug for treatment and prevention of different coagulation disorders. Orally administered enoxaparin encounters with gastrointestinal barrier because of its high water solubility, high molecular weight and significant negative charge. Since, the nano-liposomes has gained great interest for oral drug delivery, we decided to introduce the best protocol for preparing enoxaparin nano-liposomes through characterization.
View Article and Find Full Text PDFBackground: Bortezomib (BTZ) as an anticancer drug has been used through the injection pathway.
Research Design And Methods: Two types of Cyclodextrin nanosponges (CDNSs) were synthesized and studied by DLS, TEM, FTIR, and DSC instruments for BTZ delivery. Both carriers were analyzed for loading efficiencies and release.
Evaluation of axial properties including preparation, surface functionalization, and pharmacokinetics for delivery of pharmacologically active molecules and genes lead to pharmaceutical development of liposome in cancer therapy. Here, analysis of effects of the axial properties of liposome based on cancer treatment modalities as individually and coherently is vital and shows deserving further investigation for the future. In this review, recent progress in the analysis of preparation approaches, optimizing pharmacokinetic parameters, functionalization and targeting improvement and modulation of biological factors and components resulting in a better function of liposome in cancer for drug/gene delivery and immunotherapy are discussed.
View Article and Find Full Text PDFIntroduction: In recent years, new drug delivery systems have attempted to overcome the undesirable pharmacokinetic problems of various drugs. Among them, cyclodextrin nanosponges (CDNSs) attract great attention from researchers for solving major bioavailability problems such as inadequate solubility, poor dissolution rate, and the limited stability of some agents, as well as increasing their effectiveness and decreasing unwanted side effects. This novel system can also be prepared as different dosage forms.
View Article and Find Full Text PDFThe antiangiogenesis effect of Ficus carica leaves extract in an air pouch model of inflammation was investigated in rat. Inflammation was induced by injection of carrageenan into pouches. After antioxidant capacity and total phenolic content (TPC) investigations, the extract was administered at 5, 25, and 50 mg/pouch, and then the volume of exudates, the cell number, TNFα, PGE2, and VEGF levels were measured.
View Article and Find Full Text PDFPurpose: This study was aimed to evaluate general toxicity, anti-oxidant activity and effects of Ficus carica leaves extract on ischemia/reperfusion injuries.
Methods: Antioxidant activity, total phenolic and flavonoid compounds of 70% methanolic extract of Ficus carica leaves were measured. The general toxicity test was carried out by brine shrimp lethality assay.