Characterizing the role of different mutational effect sizes in the evolution of fitness-related traits has been a major goal in evolutionary biology for a century. Such characterization in a diversity of systems, both model and non-model, will help to understand the genetic processes underlying fitness variation. However, well-characterized genetic architectures of such traits in wild populations remain uncommon.
View Article and Find Full Text PDFWild Atlantic salmon populations have declined in many regions and are affected by diverse natural and anthropogenic factors. To facilitate management guidelines, precise knowledge of mechanisms driving population changes in demographics and life history traits is needed.Our analyses were conducted on (a) age and growth data from scales of salmon caught by angling in the river Etneelva, Norway, covering smolt year classes from 1980 to 2018, (b) extensive sampling of the whole spawning run in the fish trap from 2013 onwards, and (c) time series of sea surface temperature, zooplankton biomass, and salmon lice infestation intensity.
View Article and Find Full Text PDFEcological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased.
View Article and Find Full Text PDFAfter a half a century of salmon farming, we have yet to understand how the influx of genes from farmed escapees affects the full life history of Atlantic salmon ( L.) in the wild. Using scale samples of over 6900 wild adult salmon from 105 rivers, we document that increased farmed genetic ancestry is associated with increased growth throughout life and a younger age at both seaward migration and sexual maturity.
View Article and Find Full Text PDFStructural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution.
View Article and Find Full Text PDFR Soc Open Sci
October 2019
Understanding migratory patterns is important for predicting and mitigating unwanted consequences of environmental change or anthropogenic challenges on vulnerable species. Wild Atlantic salmon undergo challenging migrations between freshwater and marine environments, and the numbers of salmon returning to their natal rivers to reproduce have declined over several decades. Mortality from sea lice linked to fish farms within their seaward migration routes is proposed as a contributing factor to these declines.
View Article and Find Full Text PDFInterbreeding between domesticated and wild animals occurs in several species. This gene flow has long been anticipated to induce genetic changes in life-history traits of wild populations, thereby influencing population dynamics and viability. Here, we show that individuals with high levels of introgression (domesticated ancestry) have altered age and size at maturation in 62 wild Atlantic salmon Salmo salar populations, including seven ancestral populations to breeding lines of the domesticated salmon.
View Article and Find Full Text PDFMales and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity.
View Article and Find Full Text PDFMigrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth.
View Article and Find Full Text PDF