Today, several attempts to manage question answering (QA) have been made in three separate areas: (1) knowledge-based (KB), (2) text-based and (3) hybrid, which takes advantage of both prior areas in extracting the response. On the other hand, in question answering on a large number of sources, source prediction to ensure scalability is very important. In this paper, a method for source prediction is presented in hybrid QA, involving several KB sources and a text source.
View Article and Find Full Text PDFTHIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. The presence of a significant amount of harassment in user-generated content and its negative impact calls for robust automatic detection approaches. This requires the identification of different types of harassment.
View Article and Find Full Text PDFOur current health applications do not adequately take into account contextual and personalized knowledge about patients. In order to design "Personalized Coach for Healthcare" applications to manage chronic diseases, there is a need to create a Personalized Healthcare Knowledge Graph (PHKG) that takes into consideration a patient's health condition (personalized knowledge) and enriches that with contextualized knowledge from environmental sensors and Web of Data (e.g.
View Article and Find Full Text PDF