Glucosamine is widely prescribed as a dietary supplement used to treat arthritis. In this study, the radioprotective ability of glucosamine was evaluated against radiation-induced genotoxicity and cytotoxicity in human peripheral blood lymphocytes. Blood samples were collected from five healthy male donors and were divided into four groups.
View Article and Find Full Text PDFCurr Cancer Drug Targets
May 2022
Cancer is a chronic disorder that involves several elements of both the tumor and the host stromal cells. At present, the complex relationship between the various factors presents in the tumor microenvironment (TME) and tumor cells, as well as immune cells located within the TME, is still poorly known. Within the TME, the crosstalk of these factors and immune cells essentially determines how a tumor reacts to the treatment and how the tumor can ultimately be destroyed, remain dormant, or develop and metastasize.
View Article and Find Full Text PDFBackground: Experimental studies have shown that infiltration of inflammatory cells as well as upregulation of some cytokines play a central role in the development of late effects of ionizing radiation in heart tissues. Evidences have shown that an increased level of TGF-β has a direct correlation with late effects of exposure to ionizing radiation such as chronic oxidative stress and fibrosis. Recent studies have shown that TGF-β, through upregulation of pro-oxidant enzymes such as NOX2 and NOX4, promotes continuous ROS production and accumulation of fibrosis.
View Article and Find Full Text PDFRedox interactions play a key role in radiation injury including heart diseases. In present study, we aimed to detect the possible protective role of selenium-L-methionine on infiltration of immune cells and Duox1&2 upregulation in rat's heart tissues. In this study, 20 rats were divided into 4 groups (5 rats in each) namely: irradiation; irradiation plus Selenium-L-methionine; control; and Selenium-L-methionine treatment.
View Article and Find Full Text PDF: Radiation-induced heart injury can lead to increased risk of heart failure, attack, and ischemia. Some studies proposed IL-4 and IL-13 as two important cytokines that are involved in late effects of ionizing radiation. On the other hand, these cytokines may, through upregulation of and , induce chronic oxidative stress, inflammation, and fibrosis.
View Article and Find Full Text PDFObjective: The Lung is one of the most radiosensitive organs of the body. The infiltration of macrophages and lymphocytes into the lung is mediated via the stimulation of T-helper 2 cytokines such as IL-4 and IL-13, which play a key role in the development of fibrosis. It is likely that these cytokines induce chronic oxidative damage and inflammation through the upregulation of and , which can increase the risk of late effects of ionizing radiation (IR) such as fibrosis and carcinogenesis.
View Article and Find Full Text PDFLung tissue is one of the most sensitive organs to ionizing radiation (IR). Early and late side effects of exposure to IR can limit the radiation doses delivered to tumors that are within or adjacent to this organ. Pneumonitis and fibrosis are the main side effects of radiotherapy for this organ.
View Article and Find Full Text PDFStem cell therapy opens a new window in medicine to overcome several diseases that remain incurable. It appears such diseases as cardiovascular disorders, brain injury, multiple sclerosis, urinary system diseases, cartilage lesions and diabetes are curable with stem cell transplantation. However, some questions related to stem cell therapy have remained unanswered.
View Article and Find Full Text PDFBackground: In this study, we aimed to detect the changes in the level of interleukin (IL)-4 and IL-13 cytokines and their downstream genes including interleukin-13 receptor subunit alpha-2 (IL13Ra2), interleukin-4 receptor subunit alpha-1 (IL4Ra1), dual oxidase 1 (DUOX1) and dual oxidase 2 (DUOX2). The protective effects of Selenium-L-methionine on radiation-induced histopathological damages and changes in the level of these cytokines and genes were detected.
Methods: Four groups of 20 rats (5 rats in each) namely, control; Selenium-L-methionine, radiation and radiation plus Selenium-L-methionine were used in this study.
Background: Heart injury is one of the most important concerns after exposure to a high dose of radiation in chest cancer radiotherapy or whole body exposure to a radiation disaster. Studies have proposed that increased level of inflammatory and pro-fibrotic cytokines following radiotherapy or radiation events play a key role in the development of several side effects such as cardiovascular disorders. In the current study, we aimed to evaluate the expression of IL-4 and IL-13 cytokines as well as signaling pathways such as IL4Ra1, IL13Ra2, Duox1 and Duox2.
View Article and Find Full Text PDFRadiation-induced heart toxicity is one of the serious side effects after a radiation disaster or radiotherapy for patients with chest cancers, leading to a reduction in the quality of life of the patients. Evidence has shown that infiltration of inflammatory cells plays a key role in the development of functional damages to the heart via chronic upregulation of some pro-fibrotic and pro-inflammatory cytokines. These changes are associated with continuous free radical production and increased stiffness of heart muscle.
View Article and Find Full Text PDFPurpose: Cancer treatment is one of the most challenging diseases in the present era. Among a few modalities for cancer therapy, radiotherapy plays a pivotal role in more than half of all treatments alone or combined with other cancer treatment modalities. Management of normal tissue toxicity induced by radiation is one of the most important limiting factors for an appropriate radiation treatment course.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
March 2018
The diabetes drug metformin can mitigate the genotoxic effects of cytotoxic agents and has been proposed to prevent or even cure certain cancers. Metformin reduces DNA damage by mechanisms that are only incompletely understood. Metformin scavenges free radicals, including reactive oxygen species and nitric oxide, which are produced by genotoxicants such as ionizing or non-ionizing radiation, heavy metals, and chemotherapeutic agents.
View Article and Find Full Text PDFBackground: Each year, millions of people die from cancer. Radiotherapy is one of the main treatment strategies for cancer patients. Despite the beneficial roles of treatment with radiation, several side effects may threaten normal tissues of patients in the years after treatment.
View Article and Find Full Text PDFObjective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT) as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity.
View Article and Find Full Text PDFPurpose: Radiation causes damage to irradiated tissues and also tissues that do not receive direct irradiation through a phenomenon called out-of-field effects. This damage through signals such as inflammatory responses can be transmitted to unirradiated cells/tissues and causes many effects such as oxidative damage. The radioprotective and anti-inflammatory effects of melatonin have been demonstrated in various studies.
View Article and Find Full Text PDFBackground: Inflammation is the response of the immune system that guards the body against several harmful stimuli in normal conditions. However, in response to ionizing radiation that leads to a massive cell death and DNA aberrations, this phenomenon causes various side effects in normal tissues. Inflammation is involved in various side effects such as gastrointestinal toxicity, mucositis, skin reactions, nervous system damage, pneumonitis, fibrosis and so on.
View Article and Find Full Text PDF