Publications by authors named "Saeed Pouryazdian"

MisMatch Negativity (MMN) is a small event-related potential (ERP) that provide an index of sensory learning and perceptual accuracy for the cognitive research. Group-level analysis plays an important role for detecting differences at group or condition level, especially when the signal-to-noise ratio is low. Tensor factorization has provided a framework for group-level analysis of ERPs by exploiting more information of brain responses in more domains simultaneously.

View Article and Find Full Text PDF

This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures.

View Article and Find Full Text PDF

Electroencephalogram (EEG) is widely used for monitoring, diagnosis purposes and also for study of brain's physiological, mental and functional abnormalities. Processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. EEG signal processing tends to describe and quantify these variations in such a way that they are localized in temporal, spectral and spatial domain.

View Article and Find Full Text PDF