In an attempt to prepare ultrastable aqueous foams composed entirely of food-grade ingredients, we describe the foamability and foam stability of aqueous phases containing either calcium carbonate particles (CaCO3), sodium stearoyl lactylate surfactant (SSL), or their mixtures. Techniques including zeta potential measurements, adsorption isotherm determination, contact angles and optical and cryo-scanning electron microscopy are used to probe the interaction between particles and surfactant molecules. Aqueous dispersions of inherently hydrophilic cationic CaCO3 nanoparticles do not foam to any great extent.
View Article and Find Full Text PDFWe have investigated the formation, drop sizes, and stability of emulsions prepared by hand shaking in a closed vessel in which the emulsion is in contact with a single type of surface during its formation. The emulsions undergo catastrophic phase inversion from oil-in-water (o/w) to water-in-oil (w/o) as the oil volume fraction is increased. We find that the oil volume fraction required for catastrophic inversion exhibits a linear correlation with the oil-water-solid surface contact angle.
View Article and Find Full Text PDF