As co-stimulatory receptors, immune checkpoint molecules are found on the surface of various immune cells and transduce inhibitory signals following ligand binding. The most studied members in this regard include PD-1, TIM-3, and CTLA-4. The physiological part immune checkpoints possess is the prevention of dangerous immune attacks towards self-antigens throughout an immune response, which takes place through the negative regulation of the effector immune cells, through the induction of T-cell exhaustion, for instance.
View Article and Find Full Text PDFPurpose: HMGI-C (High Mobility Group protein Isoform I-C) protein is a member of the high-mobility group AT-hook (HMGA) family of small non-histone chromosomal protein that can modulate transcription of an ample number of genes. Genome-wide studies revealed up regulation of the HMGI-C gene in many human cancers. We suggested that HMGI-C might play a critical role in the progression and migration of various tumors.
View Article and Find Full Text PDFThe effectiveness of chemotherapy is one of the main challenges in cancer treatment and resistance to classic drugs and traditional treatment processes is an obstacle to this goal. Drug resistance that may be inherent or adventitious can cause poor treatment outcome and tumor relapse. In most cases, resistance to a drug can lead to resistance to many other drugs structure and function of which is not necessarily similar to the first drug.
View Article and Find Full Text PDFBackground: Overexpression of ATP-binding cassette (ABC) drug transporters is a major barrier in the success of cancer chemotherapy. One way to overcome overexpression of ABC drug transporter-mediated chemoresistance in acute myeloid leukemia is to suppress ABC drug transporter genes expression by small interference RNA (siRNA). In this study was assessed the involvement of ABCB1 gene in the mechanisms of resistance to etoposide in AML cells.
View Article and Find Full Text PDFBackground: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment.
Materials And Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator.