Publications by authors named "Saeed Jahandideh"

Prostate-specific membrane antigen (PSMA) is a type II membrane glycoprotein overexpressed in a variety of tumors, especially in nearly all prostate cancers, which makes it a potentially attractive antigen for targeted cancer therapies. More importantly, PSMA, due to no shedding into circulation and efficient internalization after antibody binding, becomes a potential target for antibody-drug conjugates (ADCs), a valid and emerging paradigm of cancer treatment. Four and eight PSMA-directed ADCs have been or are currently being investigated in clinical trials (three of which failed to confirm the promising results while one is currently being evaluated in an ongoing clinical study) and preclinical studies, respectively, for the treatment of PSMA-positive solid tumors, especially prostate cancer.

View Article and Find Full Text PDF

Nectin-4 (Nectin cell adhesion molecule 4), a type I transmembrane cell adhesion protein, was demonstrated to be overexpressed in a variety of tumors, making it an attractive antigen for targeted therapies such as antibody-drug conjugates (ADCs). Of great note, the US Food and Drug Administration (FDA)-approval of the first Nectin-4-directed ADC, enfortumab vedotin (EV), in urothelial cancer (UC) not only introduced Nectin-4 as a clinically validated and reliable target antigen but also confirmed the evolving role of Nectin-4-directed ADCs as novel and promising cancer therapeutics. In addition to EV, there have been or are currently being seven and eleven Nectin-4-directed ADCs, respectively, in various stages of clinical trials and preclinical development, offering a promising future for the treatment of Nectin-4-positive cancer patients.

View Article and Find Full Text PDF

The cell-surface receptor tyrosine kinase c-mesenchymal-epithelial transition factor (c-Met) is overexpressed in a wide range of solid tumors, making it an appropriate target antigen for the development of anticancer therapeutics. Various antitumor c-Met-targeting therapies (including monoclonal antibodies [mAbs] and tyrosine kinases) have been developed for the treatment of c-Met-overexpressing tumors, most of which have so far failed to enter the clinic because of their efficacy and complications. Antibody-drug conjugates (ADCs), a new emerging class of cancer therapeutic agents that harness the target specificity of mAbs to deliver highly potent small molecules to the tumor with the minimal damage to normal cells, could be an attractive therapeutic approach to circumvent these limitations in patients with c-Met-overexpressing tumors.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a promising class of cancer biopharmaceuticals that exploit the specificity of a monoclonal antibody (mAb) to selectively deliver highly cytotoxic small molecules to targeted cancer cells, leading to an enhanced therapeutic index through increased antitumor activity and decreased off-target toxicity. ADCs hold great promise for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after the approval and tremendous success of trastuzumab emtansine and trastuzumab deruxtecan, representing a turning point in both HER2-positive breast cancer treatment and ADC technology. Additionally and importantly, a total of 29 ADC candidates are now being investigated in different stages of clinical development for the treatment of HER2-positive breast cancer.

View Article and Find Full Text PDF

There is ongoing debate on how B cells contribute to the pathogenesis of multiple sclerosis (MS). The success of B-cell targeting therapies in MS highlighted the role of B cells, particularly the antibody-independent functions of these cells such as antigen presentation to T cells and modulation of the function of T cells and myeloid cells by secreting pathogenic and/or protective cytokines in the central nervous system. Here, we discuss the role of different antibody-dependent and antibody-independent functions of B cells in MS disease activity and progression proposing new therapeutic strategies for the optimization of B-cell targeting treatments.

View Article and Find Full Text PDF

Multiple sclerosis is a common neuroinflammatory disease of the central nervous system causing nervous system defects and severe physical disability. IL-21 is a proinflammatory cytokine produced mainly by Th-17 and Tfh cells which its exact role in MS was not yet clearly understood. In the present study we aimed to investigate the possible correlation of IL-21 gene expression, methylation, and its serum levels with MS severity and progression.

View Article and Find Full Text PDF

Systemic inflammatory response syndrome is a complex pathophysiologic and immunologic response to an insult. Sepsis is a life-threatening condition happening when the body's response to infection causes injury to its own tissues and organs. Stem cell therapy is a new approach to modulate immune responses.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BM-MSCs) have emerged as a potential therapy for various inflammatory diseases. Because of some limitations, several recent studies have suggested the use of embryonic stem cell-derived MSCs (ESC-MSCs) as an alternative for BM-MSCs. Some of the therapeutic effects of the ESC-MSCs are related to the secretion of a broad array of cytokines and growth factors, known as secretome.

View Article and Find Full Text PDF

Comprehensive proteome profiling of the factors secreted by mesenchymal stem cells (MSCs), referred to as secretome, revealed that it consists of cytokines, chemokines, growth factors, extracellular matrix proteins, and components of regeneration, vascularization, and hematopoiesis pathways. Harnessing this MSC secretome for therapeutic applications requires the optimization of production of secretary molecules. A variety of preconditioning methods have been introduced, which subject cells to stimulatory molecules to create the preferred response and stimulate persistent effects.

View Article and Find Full Text PDF

Background: Reduction/alkylation is one of the leading strategies for the development of antibody drug conjugates (ADCs). Precise control of the reduction process would not only yield a defined number of free thiols per antibody but also result in development of more homogenous conjugates.

Methods: In the present study, we investigated the effect of various dithiothreitol (DTT) concentrations, temperature conditions, and DTT exposure times on antibody reduction.

View Article and Find Full Text PDF