Publications by authors named "Saeed Jafarirad"

This study presents biomimetic nanoscaffolds composed of electrospun polycaprolactone-collagen (PCL-Coll) nanofibers, loaded with bioactive Arnebia euchroma (AE) extract and stem cells, to develop cell-based tissue engineering constructs. The incorporation of AE extract, known for its antioxidant and anti-inflammatory properties, into the PCL-Coll nanofibers resulted in nanoscaffolds denoted as PCL-Coll/AE, PCL-Coll/AE, PCL-Coll/AE, and PCL-Coll/AE, corresponding to AE extract concentrations of 0.0, 5.

View Article and Find Full Text PDF

Hydatid cysts caused by Echinococcus granulosus are a serious health problem that requires effective treatment. This study aimed to evaluate the scolicidal and apoptotic effects of copper oxide (CuO) and gamma alumina (γ-AlO) with or without chitosan (Chit), using Rosmarinus officinalis extract and chemical methods on protoscolices (PSCs) in vitro. The nanomaterials (NMs) were characterized by FTIR, EDS, DLS, XRD, FESEM, PDI, and zeta potential (ZP).

View Article and Find Full Text PDF

Cystic hydatid disease (CHD) is a zoonotic disease caused by the larval stage of Echinococcus granulosus (E. granulosus). This study aimed to synthesize silver nanoparticles (Ag NPs), silver boehmite nanocomposite (Ag/Bhm NC), and silver boehmite nanocomposite modified with chitosan (Ag/Bhm/Chit NC) using Rosmarinus officinalis (R.

View Article and Find Full Text PDF

This study was conducted to synthesize γ-AlOOH (bohemite)-based nanocomposites (NCs) of Au/γ-AlOOH-NC and its functionalized derivative using chitosan (Au/γ-AlOOH/Ctn-NC) and with the help of one-step Mentha piperita. The physicochemical characteristics of the NCs were investigated. In addition, biomedical properties, such as antibacterial activity under in vitro and in vivo conditions, and cell viability were assessed.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has focused on synthesizing zinc oxide/malachite nanocomposites coated with chitosan for their potential wound healing properties.
  • The study assessed various biomedical effects, including antibacterial activity, antioxidant capabilities, and changes in gene expressions related to inflammation and healing.
  • Results showed that these nanocomposites not only exhibited strong antibacterial effects but also enhanced wound healing, suggesting their promising application in ointments for treating infected wounds, pending further clinical studies.
View Article and Find Full Text PDF

Reduced graphene oxide (rGO) and Mg/rGO nanocomposites (NCs) were prepared by an eco-friendly technique using Rosa canina fruit extract. Physicochemical properties and cytotoxicity to Mentha longifolia in vitro cultures of these nanomaterials were examined by using XRD, FESEM, EDX, FT-IR, DLS/zeta potential, UV-Visible, and GC-MS techniques. The characterization techniques confirmed the synthesis of rGO and Mg/rGO NCs with particle sizes less than 20 nm (based on FESEM).

View Article and Find Full Text PDF

In the present study, new-layered inorganic/organic hybrid of silver/talc nanocomposites (Ag/Tlc-NPs) and its chitosan-capped derivative (Ag/Tlc/Csn NCs) were biochemically synthesized utilizing Lawsonia inermis L. extract. The silver nanoparticles (Ag NPs) were synthesized employing green method on the exterior surface layer of talc mineral as a solid substrate.

View Article and Find Full Text PDF

Kaolinite nanocomposites (NCs) could be utilized as agents for wound healing owing to their efficiency and low toxicity. The present study was conducted to synthesize a novel silver/kaolinite NCs (Ag/Kaol NCs) and investigate their chitosan derivation (Ag/Kaol/Chit NCs) using oak extract. XRD, SEM, EDX, FT-IR, and DLS were employed for the investigation of structural and physio-chemical properties of the synthesized NCs.

View Article and Find Full Text PDF

In this study, we report a facile green-synthesis route for the fabrication of reduced graphene oxide (rGO) using biomass of Brassica oleracea var. gongylodes (B. oleracea).

View Article and Find Full Text PDF

In this work, novel Fe/ZnO nanocomposites (NCs) and Fe nanoparticles loaded onto porous ZnO nanostructures have been synthesized via a simple biotechnological route by using Berberis thunbergii extract. In this direction, the as-synthesized bio-based porous ZnO derivatives and human serum albumin (HSA), as a biopolymeric model, form nano-hybrid assemblies. The effect of loading Fe on properties of porous ZnO nanostructures as well as the behavior of the nano-hybrid assemblies were evaluated by using XRD, SEM, EDX, DLS, PL, CD, FTIR and UV/Visible-diffuse reflectance spectra (UV/Vis-DRS) techniques.

View Article and Find Full Text PDF

The preparation of ointments from natural compounds is essential for accelerating infected wounds. This study investigated the effects of topical uses of gold nanoparticles (Au)/perlite (Au/Perl) nanocomposites (NCs) by the help of Urtica dioica extract and its chitosan-capped derivative (Chit) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing in a mouse model. Furthermore, Au/Perl/Chit nanocomposite was prepared using protonated chitosan solution.

View Article and Find Full Text PDF

The properties of nanomaterials such as perlite nanoparticles and their increased application have raised concerns about their probable toxic impacts on the aquatic ecosystems and algae. Here, a novel biochemical synthesis and immobilization of CuO is reported on perlite nanoparticles (CuO/Per-NPs) and its toxic effect on alga has been compared with nanoperlites. This biosynthesis of CuO/Per-NPs performed using phytochemicals of Haematococcus pluvialis, Sargassum angustifolium, and walnut leaves in the aqueous extract.

View Article and Find Full Text PDF

Photothermal therapy (PTT) procedure is anticipated as a new generation of cancer therapy techniques. With this in mind, in this work, an effective drug-free approach was developed to kill MCF7 breast cancer cells using PTT. A novel biocompatible nanocomposite as a PTT transducer was prepared from the in situ phytosynthesis of gold nanoparticles (Au NPs) in the presence of perlite as a platform and extract of Allium Fistulosum L.

View Article and Find Full Text PDF

The increased applications of nanomaterials in industry and biomedicine have resulted in a rising concern about their possible toxic impacts on living organisms. It has been claimed that the phytosynthesized nanomaterials have lower toxicity in comparison to their chemically synthesized counterparts. Therefore, it is important to evaluate their toxic effects on the environment.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Trachyspermum ammi has been used traditionally as a popular ethnobotanical plant in human and animal parasitic infestations. Few scientific studies have been conducted on in vitro anthelmintic activity of T. ammi against various helminths and there is no study on its in vivo/in vitro anthelmintic properties against equine helminths.

View Article and Find Full Text PDF

In this work, biological synthesis of MgO/perlite nanocomposites (NCs) besides their effects on morphology and secondary metabolite profiles of Melissa officinalis plant organ cultures were evaluated. MgO NPs were immobilized on the surface of nanoperlite using M. officinalis extract as a capping agent.

View Article and Find Full Text PDF

It has been claimed that the green synthesized NPs possess no toxicity in comparison to the NPs fabricated via conventional protocols like reduction by sodium borohydride. Therefore, it is necessary to test the toxic effects of NPs on environment. In the current study, we report the binding of FeO NPs to galate ions containing biomaterial namely "galate bio-capping agent".

View Article and Find Full Text PDF
Article Synopsis
  • A novel drug-free method was developed to target and kill MCF7 breast cancer cells using low-level laser therapy (LLLT) in conjunction with reduced graphene oxide (rGO)-based nanocomposites.
  • The fruit extract of Rosa canina was utilized for the first time to create various rGO-based nanocomposites through green synthesis, and their properties were thoroughly evaluated using multiple analytical techniques.
  • The research demonstrated that increasing the laser irradiation dose enhanced cell death, with a maximum of 50% observed at a specific dose, indicating the promising potential of rGO-based nanocomposites in cancer treatment.
View Article and Find Full Text PDF

The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. In this study, the biosynthesis of zinc oxide (ZnO) NPs by both "conventional heating" (CH) and "microwave irradiation" (MI) methods has been reported. Stable and spherical ZnONPs were produced using zinc nitrate and flesh extract of Rosa canina fruit (rosehip) which was used as a precursor.

View Article and Find Full Text PDF

Purpose: A simple type of photoresponsive amphiphilic linear-dendritic diblock copolymer has been synthesized and investigated for its ability to act as a drug carrier. These structures contain hydrophilic polyethylene oxide monomethyl ether (PEOM) as hydrophilic block and carbosiloxane dendritic branches as hydrophobic block grafted by two and six Magneson II as azo chromophore, PEOM-Azo, 2 and PEOM-Azo, 6 respectively. Self-assembling of the amphiphilic macromolecules of PEOM-Azo, 2 and PEOM-Azo, 6, briefly were represented as PEOM-Azo [2, 6], leads to the formation of their micellar aggregates in aqueous media.

View Article and Find Full Text PDF

Dendritic micelles formed from amphiphilic dendritic ABA triblock copolymers based on organic linear poly(ethylene oxide) and inorganic dendritic block containing silicon atoms (OSC-D(Gn)-PEO-D(Gn)-CSO, n=1-3)(1) were evaluated as drug delivery vehicles for a drug in both lipophilic and hydrophilic forms. The physical parameters of the drug-incorporated carriers including the influences of drug:carrier ratio, the release kinetics of the drugs from the micellar solution were measured. The apparent partition constant of drug between the carriers and the external medium was studied as well.

View Article and Find Full Text PDF