In this work, the flotation recovery of sphalerite and pyrite from an old high zinc grade tailing was studied. In particular, the effect of different flotation reagents such as collector, auxiliary collector, depressant, activators, and frother on the flotation performance were investigated. The synergic effect of the collector blends, as well as frother blends were also studied.
View Article and Find Full Text PDFAdv Colloid Interface Sci
February 2016
This review focuses on the current knowledge regarding (i) the mechanisms governing foamability and foam stability, and (ii) models for the foam column kinetics. Although different length scales of foam structure, such as air-water interface and liquid film, have been studied to elucidate the mechanisms that control the foamability and foam stability, many questions remain unanswered. It is due to the collective effects of different mechanisms involved and the complicated structures of foam sub-structures such as foam films, Plateau borders and nodes, and foam networks like soft porous materials.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2011
This paper presents a review of the published articles related to froth stability and its importance in mineral flotation. Froth structure and froth stability are known to play a significant role in determining the mineral grade and recovery achieved in a flotation operation. Froth stability is depending not only on the type and concentration of the frother but also on the nature and amount of the particles present in the system.
View Article and Find Full Text PDFAdv Colloid Interface Sci
October 2009
A review of past and present published works examining the interaction of polymeric dispersants with titania pigment particles is presented. Titania is the most important white pigments currently used in the world and its suspension properties are very important for consumer industries such as paints, papermaking and plastics; if aggregates are present, the end-use properties including gloss, opacity and storage stability will be highly affected. As polymeric dispersants are generally used to disperse titania pigment particles, it is very important to understand the interactions between the pigment particles and polymeric dispersants of varying functionality.
View Article and Find Full Text PDFThe effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions.
View Article and Find Full Text PDF