Publications by authors named "Saeed Farhadi"

In this study, MoS/NiFeO/MIL-101(Fe) nanocomposite was synthesized by hydrothermal method and used as an adsorbent for the elimination of organic dyes and some antibiotic drugs in aqueous solutions. The synthesized nanocomposite underwent characterization through different techniques, including scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), zeta potential analysis, vibrating sample magnetometry (VSM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). These results demonstrated the successful insertion of MoSwithin the cavities of MIL-101(Fe).

View Article and Find Full Text PDF

Background/aims: Upper gastrointestinal bleeding (UGIB) is a frequent medical issue. The primary risk factors for bleeding peptic ulcers are Helicobacter pylori infection and non-steroidal anti-inflammatory drugs. The association between acute gastric/duodenal ulcer and opium use has been previously proposed; however, there is no available data on endoscopic findings of patients with acute UGIB who use opium.

View Article and Find Full Text PDF

In this study, hexagonal boron nitride (BN) with a sheet-like morphology is successfully synthesized by reacting borax (NaBO·10HO) and urea (CO(NH)) powders in air a facile microwave-assisted method within a short reaction time (15 min). The as-prepared product is structurally characterized Fourier transformation infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersion X-ray analyzer (EDX), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area measurements. The adsorption process of methyl violet (MV) as a model of organic dyes and ciprofloxacin (CIP) as a model of antibiotics onto the boron nitride nanosheets has been experimentally and theoretically studied.

View Article and Find Full Text PDF

A rod-like magnetic nanocomposite was successfully synthesized in this work by loading Ag and FeO nanoparticles onto the surface of the hydroxyapatite/MIL-101(Fe) metal-organic framework. Various techniques were used to investigate the crystalline nature, size, morphology, and magnetic and structural properties of the HAP/MIL-101(Fe)/Ag/FeO nanocomposite, including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), BET surface area measurements, and zeta potential analysis. The results indicate that the nanocomposite sample is composed of Ag and FeO nanoparticles adhered to rod-like hydroxyapatite/MIL-101(Fe).

View Article and Find Full Text PDF

A novel magnetic g-CN/CoFeO nanocomposite was successfully synthesized by a simple hydrothermal method and applied as a new graphene-like carbon nitride-based sonocatalyst for sonodegradation of pollutant dyes. The as-prepared samples were characterized by using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), BET surface area measurements and photoluminescence (PL) spectroscopy. The results indicate that the nanocomposite sample is composed of spherical CoFeO nanoparticles adhered to g-CN naosheets.

View Article and Find Full Text PDF

In this work, a magnetic HPWO/FeO/MIL-88A (Fe) rod-like nanocomposite as a stable and effective ternary adsorbent was fabricated by the hydrothermal method and utilized for the removal of ciprofloxacin (CIP), tetracycline (TC) and organic dyes from aqueous solution. Characterization of the magnetic nanocomposite was accomplished by FT-IR, XRD, Raman spectroscopy, SEM, EDX, TEM, VSM, BET specific surface area and zeta potential analyses. The influencing factors on the adsorption potency of the HPWO/FeO/MIL-88A (Fe) rod-like nanocomposite including initial dye concentration, temperature and adsorbent dose were studied.

View Article and Find Full Text PDF

A novel porous nanocomposite composed of hydroxyapatite nanorods (HAP), a MIL-101(Fe) metal-organic framework, and FeO nanoparticles was successfully fabricated in this work. The magnetic HAP/MIL-101(Fe)/FeO ternary nanocomposite was identified by various techniques, namely FT-IR spectroscopy, XRD, Raman spectroscopy, SEM, EDX, TEM, BET specific surface area, zeta potential, and VSM measurements. Tetracycline (TC) and ciprofloxacin (CIP) aqueous solutions were used to evaluate the adsorption performance of the resulting HAP/MIL-101(Fe)/FeO composite.

View Article and Find Full Text PDF

A new hybrid of silica aerogel with a Preyssler-type polyoxometalate and MIL-101(Cr) metal-organic framework was prepared and used as a highly porous fiber coating for headspace solid-phase microextraction of Ferulago angulata volatile components. Applying a permanent magnetic field to the sorbent increased the extraction efficiency for most of the plant's components, up to 5.53 times.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the successful synthesis of a novel nanocomposite consisting of NaY zeolite/MgFeO/CdS nanorods/MoS nanoflowers using an ultrasonic-assisted solvothermal method.
  • The sonocatalytic performance of this nanocomposite was evaluated for degrading organic dyes like methylene blue, revealing a first-order reaction model and significant degradative efficacy.
  • Findings also indicated excellent recyclability with less than 6% loss in catalytic activity after four uses, while hydroxyl radicals were highlighted as key players in the decomposition process.
View Article and Find Full Text PDF

In this work, an inorganic-organic hybrid nanomaterial, PMo/MIL-101(Cr), based on Wells-Dawson-type (NH)PMoO polyoxometalate (abbreviated as PMo) and the MIL-101(Cr) metal-organic framework was fabricated by the reaction of (NH)PMoO, Cr(NO)·9HO and terephthalic acid under hydrothermal conditions. The as-prepared recyclable nanohybrid was fully characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) equipped with energy dispersive X-ray microanalysis (EDX), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy and Brunauer-Emmett-Teller (BET) specific surface area studies. All the analyses confirmed the successful insertion of PMoO heteropolyanion within the cavities of MIL-101(Cr).

View Article and Find Full Text PDF

In this study, the MIL-101(Cr) metal-organic framework was functionalized with a Dowson-type polyoxometalate (PWO ; POM) and magnetic spinel cobalt ferrite (CoFeO; CFO) through a hydrothermal route and was characterized by means of FT-IR, XRD, FE-SEM, EDX, BET, and VSM measurements. All analyses confirmed the successful encapsulation of POM (∼32.2 wt%) into the magnetic MIL-101(Cr) framework.

View Article and Find Full Text PDF

In this study, for the first time, a novel magnetically recyclable MIL-101(Cr)/CoFeO nanocomposite was prepared a facile solvothermal method. The morphology, structural, magnetic and optical properties of the nanocomposite were characterized field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), UV-visible spectroscopy (UV-visible) and BET surface area analysis. Furthermore, the sonocatalytic activity of the MIL-101(Cr)-based magnetic nanocomposite was explored for the degradation of organic dye pollutants such as Rhodamine B (RhB) and methyl orange (MO) under ultrasound irradiation in the presence of HO.

View Article and Find Full Text PDF

In the present study, biological synthesis of Ag-ZnO nanocomposites was performed using hydroalcoholic extract of fenugreek leaves. Metal/semiconductor oxide nanocomposites are excellent owing to their optical, electrical, magnetic, and chemical properties that are not detected in single individual constituents. The synthesized Ag-ZnO nanocomposites were investigated through the use of methods such as FTIR, UV vis DRS, SEM-EDX, TEM, XRD, zeta potential analysis, and DLS.

View Article and Find Full Text PDF

In this research, a novel magnetic sonocatalyst nanocomposite, CoFeO@Cr-MIL-101/Y zeolite, has been successfully fabricated employing a simple hydrothermal method. The as-prepared catalyst was thoroughly identified using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), EDS elemental dot-mapping, transmission electron microscopy (TEM), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), and nitrogen Brunauer-Emmett-Teller (N-BET) analyses. The procured CoFeO@Cr-MIL-101/Y nanocomposite was then assessed for the decomposition of three types of organic dyes namely methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) from water solution using ultrasound irradiation and subsequently monitored UV-Vis absorption technique.

View Article and Find Full Text PDF

A new organic-inorganic nanohybrid compound, ([Cu{(HOCHCH)NCS}][PMoO] (1)), has been prepared by sonochemical technique using copper(II) dithiocarbamate complex and a Keggin-type polyoxomolybdate in this research. FT-IR, XRD, FE-SEM, TEM, EDX, UV-Vis, TGA, BET, and single crystal XRD analyses were applied to describe the properties of the composition of the nanohybrid. Compound (1) is composed of [PMoO] building blocks and [Cu{(HOCHCH)NCS}] cationic moieties, and electrostatic forces and substantial hydrogen-bonding interactions were applied to pack them; and consequently, a three dimensional supramolecular framework was made based on single-crystal X-ray diffraction patterns.

View Article and Find Full Text PDF

In this work, a novel n-type CdS nanorods/p-type LaFeO (CdS NRs/LFO) nanocomposite was prepared, for the first time, a facile solvothermal method. The as-prepared n-CdS NRs/p-LFO nanocomposite was characterized by using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), UV-visible diffuse reflection spectroscopy (DRS), vibrating sample magnetometry (VSM), photoluminescence (PL) spectroscopy, and Brunauer-Emmett-Teller (BET) surface area analysis. All data revealed the attachment of the LFO nanoparticle on the surface of CdS NRs.

View Article and Find Full Text PDF

Herein, in a new approach, highly porous alumina materials (HiPAs) have been synthesized through cetyltrimethylammonium bromide (CTAB) bloated micelles or merged CTAB/dicarboxylic acid vesicular aggregates (di-acids with 8, 10, and 12 carbon atoms) as novel templates and characterized by N sorption, low- and wide-angle XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy), TEM (transmission electron microscopy), HR-TEM (high-resolution transmission electron microscopy), DLS (dynamic light scattering), and AFM (atomic force microscopy) analyses. In the absence of dicarboxylic acids, CTAB bloated micelles in ethanol-aqueous solutions were conductive to the formation of mesoporous γ-alumina hollow spheres (HiPA-CT) with high surface area (394 m g) and ultralarge pore volume (1.8 cm g).

View Article and Find Full Text PDF

A novel magnetic cadmium titanate-copper ferrite (CdTiO/CuFeO) nanocomposite, in which spherical CuFeO nanoparticles were loaded onto the surface of CdTiO nanoplates, was successfully synthesized a sol-gel hydrothermal route at 180 °C. The structure, morphology, magnetic and optical properties of the as-prepared nanocomposite were respectively characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, UV-visible diffuse reflectance spectroscopy (DRS), vibrating sample magnetometry (VSM) and photoluminescence (PL) spectroscopy. The photocatalytic activity of this novel CdTiO-based magnetic nanocomposite was investigated for the degradation of organic dye pollutants such as methylene blue (MB), rhodamine B (RhB), and methyl orange (MO) in the presence of HO under visible light irradiation.

View Article and Find Full Text PDF

In this work, Dawson-type K6P2W18O62 polyoxometalate salt (abbreviated as P2W18) was successfully encapsulated into mesoporous MIL-101(Cr) metal organic framework. The as-prepared P2W18@MIL-101(Cr) nanohybrid was characterized by FT-IR spectroscopy, XRD, Raman spectroscopy, EDX, SEM, zeta potential measurements and BET surface area. The results demonstrated the successful loading of K6P2W18O62 (~36 wt.

View Article and Find Full Text PDF

In this work, a novel ternary magnetic nanocomposite namely Ag/CuFe2O4/rGO was produced by a facile solvothermal route. The reduction of graphene oxide (GO) to reduced form (rGO) and the in-situ deposition of CuFe2O4 and Ag nanoparticles on rGO occurred simultaneously in a one-pot reaction. The structure, composition and morphology of the as-prepared nanocomposite were characterized by FT-IR, XRD, VSM, FESEM, EDX, TEM, and BET analyses.

View Article and Find Full Text PDF

In this study, a Wells-Dawson type KPWO polyoxometalate was encapsulated into the magnetic FeO/MIL-101 (Cr) metal-organic framework and applied as a new magnetically recoverable ternary adsorbent to remove organic dyes from aqueous solutions. The as-prepared ternary magnetically recyclable hybrid (denoted as PWO@FeO/MIL-101 (Cr)) was characterized by FT-IR spectroscopy, powder X-ray diffraction (XRD), Raman spectroscopy, EDX, SEM, BET surface area, and magnetic measurements. The results showed the successful encapsulation of KPWO (∼26.

View Article and Find Full Text PDF

Novel magnetically separable Bi2O2CO3/CoFe2O4 nanocomposites were fabricated by a feasible hydrothermal route. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), vibrating sample magnetometer (VSM), and N2 adsorption-desorption analysis were employed to examine the structure, morphology, particle size, phase composition, optical and magnetic properties of the as-synthesized nanocomposites. The results of the findings showed demonstrated the successful coupling of spherical CoFe2O4 nanoparticles and plate-like Bi2O2CO3 nanostructures.

View Article and Find Full Text PDF

The sonocatalytic activity of the magnetic CuS/CoFeO (CuS/CFO) nanohybrid was studied through the HO-assisted system for degradation of water soluble organic pollutants such as methylene blue (MB), rhodamine B (RhB) and methyl orange (MO). The CuS/CFO nanohybrid was fabricated at 200 °C by hydrothermal method. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive X-ray microanalysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, magnetic measurements, and Brunauere-Emmette-Teller (BET) were employed for the characterizing the structure and morphology of the so-synthesized nanohybrid.

View Article and Find Full Text PDF

In this work, fullerene-modified magnetic silver phosphate (AgPO/FeO/C) nanocomposites with efficient visible light photocatalytic and catalytic activity were fabricated by a simple hydrothermal approach. The composition and structure of the obtained new magnetically recyclable ternary nanocomposites were completely characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Brunauer-Emmett-Teller (BET) specific surface area analysis, vibrating sample magnetometery (VSM), diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy and transmission electron microscopy (TEM). This novel magnetically recyclable heterogeneous fullerene-modified catalyst was tested for the HO-assisted photocatalytic degradation of MB dye under visible light.

View Article and Find Full Text PDF

In this study, new ternary magnetic MIL-101(Cr)/RGO/ZnFeO catalyst (with 30% wt of ZnFeO) was synthesized via a hydrothermal route for sonodegradation of organic dyes. The structural, optical and magnetic properties of the nanocomposite were detected by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-visible), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, vibrating sample magnetometer (VSM), atomic force microscopy (AFM), Raman spectroscopy and BET surface area analysis. To evaluate the sonocatalytic activity of the as-prepared MIL-101(Cr)/RGO/ZnFeO nanocomposite, the HO-assisted degradation of organic dyes such as congo red (CR), methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) in aqueous solution was studied under ultrasound irradiation.

View Article and Find Full Text PDF