Publications by authors named "Saeed Fallahi"

Optimal control of qubits requires the ability to adapt continuously to their ever-changing environment. We demonstrate a real-time control protocol for a two-electron singlet-triplet qubit with two fluctuating Hamiltonian parameters. Our approach leverages single-shot readout classification and dynamic waveform generation, allowing full Hamiltonian estimation to dynamically stabilize and optimize the qubit performance.

View Article and Find Full Text PDF

The spin 1/2 entropy of electrons trapped in a quantum dot has previously been measured with great accuracy, but the protocol used for that measurement is valid only within a restrictive set of conditions. Here, we demonstrate a novel entropy measurement protocol that is universal for arbitrary mesoscopic circuits and apply this new approach to measure the entropy of a quantum dot hybridized with a reservoir. The experimental results match closely to numerical renormalization group (NRG) calculations for small and intermediate coupling.

View Article and Find Full Text PDF

This paper introduces a novel variant of the quantum particle swarm optimization algorithm based on the quantum concept of particle-like solitons as the most common solutions of the quantum nonlinear Schrödinger equation. Soliton adaptation in external potentials is one of their most remarkable features which allows them to be stabilized even without a trapping potential, while the potential must be bounded for quantum particles to be localized. So we consider the motion scenario of the present algorithm based on the corresponding probability density function of quantum solitons.

View Article and Find Full Text PDF

Previous measurements utilizing Maxwell relations to measure change in entropy, , demonstrated remarkable accuracy in measuring the spin-1/2 entropy of electrons in a weakly coupled quantum dot. However, these previous measurements relied upon prior knowledge of the charge transition lineshape. This had the benefit of making the quantitative determination of entropy independent of scale factors in the measurement itself but at the cost of limiting the applicability of the approach to simple systems.

View Article and Find Full Text PDF

Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins.

View Article and Find Full Text PDF

The transfer of information between quantum systems is essential for quantum communication and computation. In quantum computers, high connectivity between qubits can improve the efficiency of algorithms, assist in error correction, and enable high-fidelity readout. However, as with all quantum gates, operations to transfer information between qubits can suffer from errors associated with spurious interactions and disorder between qubits, among other things.

View Article and Find Full Text PDF

Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs quantum well transistors, which presents the evidence of flat bands in semiconductor AG. Two emerging peaks in photoluminescence spectra tuned by backgate voltages probe the singularity doublet of AG flat bands and demonstrate their accessibility to the Fermi level.

View Article and Find Full Text PDF

Because of their long coherence times and potential for scalability, semiconductor quantum-dot spin qubits hold great promise for quantum information processing. However, maintaining high connectivity between quantum-dot spin qubits, which favor linear arrays with nearest neighbor coupling, presents a challenge for large-scale quantum computing. In this work, we present evidence for long-distance spin-chain-mediated superexchange coupling between electron spin qubits in semiconductor quantum dots.

View Article and Find Full Text PDF

Among the different platforms for quantum information processing, individual electron spins in semiconductor quantum dots stand out for their long coherence times and potential for scalable fabrication. The past years have witnessed substantial progress in the capabilities of spin qubits. However, coupling between distant electron spins, which is required for quantum error correction, presents a challenge, and this goal remains the focus of intense research.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional topological materials with time-reversal-breaking magnetic fields can host special edge modes that are protected from disruptions, leading to one-way propagation.
  • Even in uniform materials, unique edge modes called kink modes can exist at the boundaries of different magnetic field regions, although, until now, these had mainly been theoretical.
  • This study presents the first experimental evidence of these kink magnetoplasmons (KMPs) in a GaAs/AlGaAs 2DEG system, showing that they can travel unidirectionally along boundaries while demonstrating significant control through magnetic or gate voltage adjustments.
View Article and Find Full Text PDF

Quantum information science has the potential to revolutionize modern technology by providing resource-efficient approaches to computing, communication and sensing. Although the physical qubits in a realistic quantum device will inevitably suffer errors, quantum error correction creates a path to fault-tolerant quantum information processing. Quantum error correction, however, requires that individual qubits can interact with many other qubits in the processor.

View Article and Find Full Text PDF

Collective modes of exotic quantum fluids reveal underlying physical mechanisms responsible for emergent quantum states. We observe unexpected new collective modes in the fractional quantum Hall (FQH) regime: intra-Landau-level plasmons measured by resonant inelastic light scattering. The plasmons herald rotational-symmetry-breaking (nematic) phases in the second Landau level and uncover the nature of long-range translational invariance in these phases.

View Article and Find Full Text PDF

Scalable quantum processors require tunable two-qubit gates that are fast, coherent and long-range. The Heisenberg exchange interaction offers fast and coherent couplings for spin qubits, but is intrinsically short-ranged. Here, we demonstrate that its range can be increased by employing a multielectron quantum dot as a mediator, while preserving speed and coherence of the resulting spin-spin coupling.

View Article and Find Full Text PDF

The interplay between electron-electron interactions and the honeycomb topology is expected to produce exotic quantum phenomena and find applications in advanced devices. Semiconductor-based artificial graphene (AG) is an ideal system for these studies that combines high-mobility electron gases with AG topology. However, to date, low-disorder conditions that reveal the interplay of electron-electron interaction with AG symmetry have not been achieved.

View Article and Find Full Text PDF

We use a one-electron quantum dot as a spectroscopic probe to study the spin properties of a gate-controlled multielectron GaAs quantum dot at the transition between odd and even occupation numbers. We observe that the multielectron ground-state transitions from spin-1/2-like to singletlike to tripletlike as we increase the detuning towards the next higher charge state. The sign reversal in the inferred exchange energy persists at zero magnetic field, and the exchange strength is tunable by gate voltages and in-plane magnetic fields.

View Article and Find Full Text PDF

Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees with a classical spin diffusion model over 6 orders of magnitude in frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as 1/f^{2} for frequency f≳1  Hz. Increasing the applied magnetic field from 0.1 to 0.

View Article and Find Full Text PDF

Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence.

View Article and Find Full Text PDF

We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes.

View Article and Find Full Text PDF