Publications by authors named "Saeed Boorboor"

We present VoxAR, a method to facilitate an effective visualization of volume-rendered objects in optical see-through head-mounted displays (OST-HMDs). The potential of augmented reality (AR) to integrate digital information into the physical world provides new opportunities for visualizing and interpreting scientific data. However, a limitation of OST-HMD technology is that rendered pixels of a virtual object can interfere with the colors of the real-world, making it challenging to perceive the augmented virtual information accurately.

View Article and Find Full Text PDF
Article Synopsis
  • - Submerse is an innovative framework designed to visualize flood scenarios using detailed 3D virtual scenes that integrate geographical data, which helps users understand flooding impacts in a clear and realistic way.
  • - The system enhances performance with adaptive grid methods and dynamic quadtrees, allowing for efficient handling of large datasets and enabling detailed animations of flooding through water wave synthesis.
  • - Developed through collaboration between computer and atmospheric scientists, Submerse was tested in workshops with emergency managers and experts, showcasing its utility in visualizing flooding events like a superstorm in New York City through immersive technology.
View Article and Find Full Text PDF

The growing complexity of spatial and structural information in 3D data makes data inspection and visualization a challenging task. We describe a method to create a planar embedding of 3D treelike structures using their skeleton representations. Our method maintains the original geometry, without overlaps, to the best extent possible, allowing exploration of the topology within a single view.

View Article and Find Full Text PDF

Recent advances in high-resolution microscopy have allowed scientists to better understand the underlying brain connectivity. However, due to the limitation that biological specimens can only be imaged at a single timepoint, studying changes to neural projections over time is limited to observations gathered using population analysis. In this article, we introduce NeuRegenerate, a novel end-to-end framework for the prediction and visualization of changes in neural fiber morphology within a subject across specified age-timepoints.

View Article and Find Full Text PDF

We introduce NeuroConstruct, a novel end-to-end application for the segmentation, registration, and visualization of brain volumes imaged using wide-field microscopy. NeuroConstruct offers a Segmentation Toolbox with various annotation helper functions that aid experts to effectively and precisely annotate micrometer resolution neurites. It also offers an automatic neurites segmentation using convolutional neuronal networks (CNN) trained by the Toolbox annotations and somas segmentation using thresholding.

View Article and Find Full Text PDF

We present a visual analytics framework, CMed, for exploring medical image data annotations acquired from crowdsourcing. CMed can be used to visualize, classify, and filter crowdsourced clinical data based on a number of different metrics such as detection rate, logged events, and clustering of the annotations. CMed provides several interactive linked visualization components to analyze the crowd annotation results for a particular video and the associated workers.

View Article and Find Full Text PDF

Wide-field microscopes are commonly used in neurobiology for experimental studies of brain samples. Available visualization tools are limited to electron, two-photon, and confocal microscopy datasets, and current volume rendering techniques do not yield effective results when used with wide-field data. We present a workflow for the visualization of neuronal structures in wide-field microscopy images of brain samples.

View Article and Find Full Text PDF