Terrestrial ecosystems are under the enormous pressure of land use management regimes through human disturbances, resulting in the disruption of biogeochemical cycles and associated ecosystem services. Nitrogen (N) in soil ecosystems is of vital importance for primary productivity, hence estimating the extent of these human interventions on N-cycling processes becomes imperative from economic and environmental perspectives. This work investigated the impacts of variable anthropogenic activities on N cycling in three different terrestrial ecosystems (arable, grassland, and forest) in three regions of lower Himalaya, Pakistan.
View Article and Find Full Text PDFExcess nitrogen is a pollutant and global problem that harms ecosystems and can severely affect human health. Pollutant nitrogen is becoming more widespread and intensifying in the tropics. There is thus a requirement to develop nitrogen biomonitoring for spatial mapping and trend analysis of tropical biodiversity and ecosystems.
View Article and Find Full Text PDFSoil salinity, drought, and increasing temperatures are serious environmental issues that drastically reduce crop productivity worldwide. Quinoa ( Willd) is an important crop for food security under the changing climate. This study examined the physio-biochemical responses, plant growth, and grain yield of four quinoa genotypes (A7, Titicaca, Vikinga, and Puno) grown in pots containing normal (non-saline) or salt-affected soil exposed to drought and elevated-temperature treatments.
View Article and Find Full Text PDFCadmium (Cd) contamination and soil salinity are the main environmental issues reducing crop productivity. This study aimed to examine the combined effects of salinity (NaCl) and Cd on the physiological and biochemical attributes of quinoa (Chenopodium quinoa Willd.).
View Article and Find Full Text PDFrecalcitrance of wheat to regeneration is the major bottleneck for its improvement through callus-based genetic transformation. Nanotechnology is one of the most dynamic areas of research, which can transform agriculture and biotechnology to ensure food security on sustainable basis. Present study was designed to investigate effects of CuSO, AgNO and their nanoparticles on tissue culture responses of mature embryo culture of wheat genotypes (AS-2002 and Wafaq-2001).
View Article and Find Full Text PDFThe objectives of this study were to investigate the effects of arsenic (As) on physiological and biochemical attributes of quinoa, and human health risks associated with the consumption of As contaminated grains of quinoa. Quinoa genotype, Puno was grown on soil contaminated with various levels of arsenite; 0, 10, 20, 30, and 40 mg As kg soil. Results revealed that plant growth, photosynthetic pigments, stomatal conductance, and grain yield of As treated plants were significantly less as compared to control plants.
View Article and Find Full Text PDFSoil salinity and arsenic (As) contamination are serious environmental problems. To investigate the effects of salinity on As uptake and physiological and biochemical attributes of quinoa (Chenopodiumquinoa Willd.), a hydroponic experiment was performed.
View Article and Find Full Text PDFHeavy metal contamination in the environment is a global threat which accelerated after the industrial revolution. Remediation of these noxious elements has been widely investigated and multifarious technologies have been practiced for many decades. Phytoremediation has attracted much attention from researchers.
View Article and Find Full Text PDFThis study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates.
View Article and Find Full Text PDFThe Zn hyperaccumulating plant, Noccaea caerulescens, was grown under controlled conditions at a range of Zn concentrations (0-1000 mg kg(-1) dwt. soil) to determine the effectiveness of hyperaccumulation in deterring the cabbage whitefly, Aleyrodes proletella, and to establish the relationship between levels of foliar Zn and glucosinolates (organic defence compounds). Two weeks after introducing A.
View Article and Find Full Text PDFIn this study, the biocontrol abilities of water-soluble and volatile metabolites of three different isolates of Trichoderma (T. asperellum, T. harzianum and Trichoderma spp.
View Article and Find Full Text PDF