Self-assembled InAs quantum dots (QDs) are promising optomechanical elements due to their excellent photonic properties and sensitivity to local strain fields. Microwave-frequency modulation of photons scattered from these efficient quantum emitters has been recently demonstrated using surface acoustic wave (SAW) cavities. However, for optimal performance, a gate structure is required to deterministically control the charge state and reduce the charge noise of the QDs.
View Article and Find Full Text PDFSingle-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale spectroscopic imaging or photonic quantum computing applications, the size of visible to near-infrared transition-edge sensor arrays and their associated readouts must be increased from a few pixels to many thousands. In this manuscript, we introduce the kinetic inductance current sensor, a scalable readout technology that exploits the nonlinear kinetic inductance in a superconducting resonator to make sensitive current measurements.
View Article and Find Full Text PDFA large-format mid-infrared single-photon imager with very low dark count rates would enable a broad range of applications in fields like astronomy and chemistry. Superconducting nanowire single-photon detectors (SNSPDs) are a mature photon-counting technology as demonstrated by their figures of merit such as high detection efficiencies and very low dark count rates. However, scaling SNSPDs to large array sizes for mid-infrared applications requires sophisticated readout architectures in addition to superconducting materials development.
View Article and Find Full Text PDFIII-V semiconductor quantum dots (QDs) are near-ideal and versatile single-photon sources. Because of the capacity for monolithic integration with photonic structures as well as optoelectronic and optomechanical systems, they are proving useful in an increasingly broad application space. Here, we develop monolithic circular dielectric gratings on bulk substrates - as opposed to suspended or wafer-bonded substrates - for greatly improved photon collection from InAs quantum dots.
View Article and Find Full Text PDFState readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong rf electric fields used for trapping can impact detector performance. Here, we report on NbTiN superconducting nanowire single-photon detectors (SNSPDs) employing grounded aluminum mirrors as electrical shielding that are integrated into linear surface-electrode rf ion traps. The shielded SNSPDs can be operated at applied rf trapping potentials of up to 54 V at 70 MHz and temperatures of up to 6 K, with a maximum system detection efficiency of 68 %.
View Article and Find Full Text PDFUncovering the nature of dark matter is one of the most important goals of particle physics. Light bosonic particles, such as the dark photon, are well-motivated candidates: they are generally long-lived, weakly interacting, and naturally produced in the early universe. In this work, we report on Light A^{'} Multilayer Periodic Optical SNSPD Target, a proof-of-concept experiment searching for dark photon dark matter in the eV mass range, via coherent absorption in a multilayer dielectric haloscope.
View Article and Find Full Text PDFA quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware.
View Article and Find Full Text PDFWe introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual design and science program. This haloscope plans to search for bosonic dark matter across the [10^{-3},1] eV ([0.24, 240] THz) mass range.
View Article and Find Full Text PDFLong-distance optical quantum channels are necessarily lossy, leading to errors in transmitted quantum information, entanglement degradation and, ultimately, poor protocol performance. Quantum states carrying information in the channel can be probabilistically amplified to compensate for loss, but are destroyed when amplification fails. Quantum correction of the channel itself is therefore required, but break-even performance-where arbitrary states can be better transmitted through a corrected channel than an uncorrected one-has so far remained out of reach.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
January 2022
The coronavirus disease 2019 (COVID-19) pandemic led to the need for tracking of physical contacts and potential exposure to disease. Traditional contact tracing can be augmented by electronic tools called "electronic contact tracing" or "exposure notification.".
View Article and Find Full Text PDFEquilibrium propagation is a learning framework that marks a step forward in the search for a biologically-plausible implementation of deep learning, and could be implemented efficiently in neuromorphic hardware. Previous applications of this framework to layered networks encountered a vanishing gradient problem that has not yet been solved in a simple, biologically-plausible way. In this paper, we demonstrate that the vanishing gradient problem can be mitigated by replacing some of a layered network's connections with random layer-skipping connections in a manner inspired by small-world networks.
View Article and Find Full Text PDFWe develop and demonstrate a source of polarization-entangled photon pairs using spontaneous parametric down-conversion (SPDC) in domain-engineered, periodically poled lithium niobate (PPLN) at telecom wavelengths. Pumped at 775 nm, this domain-engineered type-II SPDC source produces non-degenerate signal and idler pairs at 1530 nm and 1569 nm. Because of birefringence, the photon pair with horizontally polarized signal and vertically polarized idler has a different phasematching condition than the pair with vertically polarized signal and horizontally polarized idler.
View Article and Find Full Text PDFRecent advances in quantum technologies are rapidly stimulating the building of quantum networks. With the parallel development of multiple physical platforms and different types of encodings, a challenge for present and future networks is to uphold a heterogeneous structure for full functionality and therefore support modular systems that are not necessarily compatible with one another. Central to this endeavor is the capability to distribute and interconnect optical entangled states relying on different discrete and continuous quantum variables.
View Article and Find Full Text PDFW centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218 µm. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diodes (LEDs).
View Article and Find Full Text PDFNonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense nonlinear interactions of nanophotonic waveguides can be leveraged to meet these requirements. Here we demonstrate second harmonic generation (SHG) in GaAs-on-insulator waveguides with unprecedented efficiency of 40 W for a single-pass device.
View Article and Find Full Text PDFApplications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device-independent quantum random number generators can produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer from high latency, requiring many hours to produce any random bits. We demonstrate device-independent quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof protocol, obtaining multiple blocks of 512 random bits with an average experiment time of less than 5 min per block and with a certified error bounded by 2^{-64}≈5.
View Article and Find Full Text PDFWe measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and connectorized fiber-coupled single-photon detectors.
View Article and Find Full Text PDFWe present a 1024-element near-infrared imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32×32 row-column multiplexing architecture. The array has an active area of 0.96 × 0.
View Article and Find Full Text PDFWe propose the use of superconducting nanowires as both target and sensor for direct detection of sub-GeV dark matter. With excellent sensitivity to small energy deposits on electrons and demonstrated low dark counts, such devices could be used to probe electron recoils from dark matter scattering and absorption processes. We demonstrate the feasibility of this idea using measurements of an existing fabricated tungsten-silicide nanowire prototype with 0.
View Article and Find Full Text PDFWe use pulsed spontaneous parametric down-conversion in KTiOPO , with a Gaussian phase-matching function and a transform-limited Gaussian pump, to achieve near-unity spectral purity in heralded single photons at telecommunication wavelength. Theory shows that these phase-matching and pump conditions are sufficient to ensure that a biphoton state with a circularly symmetric joint spectral intensity profile is transform limited and factorable. We verify the heralded-state spectral purity in a four-fold coincidence measurement by performing Hong-Ou-Mandel interference between two independently generated heralded photons.
View Article and Find Full Text PDFTransition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux conditions. This is usually addressed by pulsing the light source or discarding overlapping signals, thereby limiting its applicability.
View Article and Find Full Text PDFSingle self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies.
View Article and Find Full Text PDFWe demonstrate the tunable quantum beat of single photons through the co-development of core nonlinear nanophotonic technologies for frequency-domain manipulation of quantum states in a common physical platform. Spontaneous four-wave mixing in a nonlinear resonator is used to produce non-degenerate, quantum-correlated photon pairs. One photon from each pair is then frequency shifted, without degradation of photon statistics, using four-wave mixing Bragg scattering in a second nonlinear resonator.
View Article and Find Full Text PDFIEEE Trans Appl Supercond
January 2019
Superconducting nanowire devices, such as the superconducting nanowire single photon detector (SNSPD) or nanocryotron, have a time-dependent stochasticity that depends on the current flowing through them. When modeling complex circuits made of several such devices (for instance, an array of SNSPDs), the ability to include this randomness can be important for predicting unwanted effects and interactions within the circuit. We present a modification of the model described by Berggren .
View Article and Find Full Text PDFWe demonstrate optical probing of spectrally resolved single Nd^{3+} rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting in near radiatively limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations.
View Article and Find Full Text PDF