In daily life, we coordinate both simultaneous and sequential bimanual movements to manipulate objects. Our ability to rapidly account for different object dynamics suggests there are neural mechanisms to quickly deal with them. Here we investigate how actions of one arm can serve as a contextual cue for the other arm and facilitate adaptation.
View Article and Find Full Text PDFMost individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb.
View Article and Find Full Text PDFMotor adaptation to novel dynamics occurs rapidly using sensed errors to update the current motor memory. This adaption is strongly driven by proprioceptive and visual signals that indicate errors in the motor memory. Here, we extend this previous work by investigating whether the presence of additional visual cues could increase the rate of motor adaptation, specifically when the visual motion cue is congruent with the dynamics.
View Article and Find Full Text PDFVoluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
During object manipulation, our sensorimotor sys-tem needs to represent the objects dynamics in order to better control it. This is especially important in the case of grip force control where small forces can cause the object to slip from our fingers, and excessive forces can cause fatigue or even damage the object. While the tradeoff between these two constraints is clear for stable objects, such as lifting a soda can, it is less clear how the sensorimotor system adjusts the grip force for unstable objects.
View Article and Find Full Text PDFLearning new movement patterns is a normal part of daily life, but of critical importance in both sport and rehabilitation. A major question is how different sensory signals are integrated together to give rise to motor adaptation and learning. More specifically, there is growing evidence that pain can give rise to alterations in the learning process.
View Article and Find Full Text PDFThe perception of our body in space is flexible and manipulable. The predictive brain hypothesis explains this malleability as a consequence of the interplay between incoming sensory information and our body expectations. However, given the interaction between perception and action, we might also expect that actions would arise due to prediction errors, especially in conflicting situations.
View Article and Find Full Text PDFMonitoring of finger manipulation without disturbing the inherent functionalities is critical to understand the sense of natural touch. However, worn or attached sensors affect the natural feeling of the skin. We developed nanomesh pressure sensors that can monitor finger pressure without detectable effects on human sensation.
View Article and Find Full Text PDFIn our daily life we often make complex actions comprised of linked movements, such as reaching for a cup of coffee and bringing it to our mouth to drink. Recent work has highlighted the role of such linked movements in the formation of independent motor memories, affecting the learning rate and ability to learn opposing force fields. In these studies, distinct prior movements (lead-in movements) allow adaptation of opposing dynamics on the following movement.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
In this study we experimentally test and model the control behavior of human participants when controlling inverted pendulums of different dynamic lengths, and with visual feedback of varying congruence to these dynamic lengths. Participants were asked to stabilize the inverted pendulum of L = 1 m and L = 4 m, with visual feedback shown at various distances along the pendulum. We fit a family of linear models to the control input (cart velocity) applied by participants.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Successful manipulation of objects requires forming internal representations of the object dynamics. To do so, the sensorimotor system uses visual feedback of the object movement allowing us to estimate the object state and build the representation. One way to investigate this mechanism is by introducing a discrepancy between the visual feedback about the object's movement and the actual movement.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
We recently developed a simulated inverted pendulum in order to examine human sensorimotor control strategies for stabilization. This simulated system allows us to manipulate the visual and haptic feedback independently from the physical dynamics of the task. Here we examine the effect of sensory delay in a balancing task.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
We developed a new technique to measure the contributions of rapid visuomotor feedback responses to the stabilization of a simulated inverted pendulum. Human participants balanced an inverted pendulum simulated on a robotic manipulandum. At a random time during the balancing task, the visual representation of the tip of the pendulum was shifted by a small displacement to the left or right while the motor response was measured.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
We examine the visual influence of stabilization in human sensorimotor control using a simulated inverted pendulum. As the inverted pendulum is fully simulated, we are able to manipulate the visual feedback independently from the dynamics during the motor control task. Human subjects performed a balancing task of an upright pendulum on a robotic manipulandum in two different visual feedback conditions.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Sensorimotor control regulates balance and stability as well as adaptation to the external environment. We introduce the use of a simulated inverted pendulum to study human sensorimotor control, demonstrating that this system introduces similar control challenges to human subjects as a physical inverted pendulum. Participants exhibited longer stabilization of the system as the pendulum length between the hand and the center of mass increased while the required control input varied in a non-monotonic, yet predictable manner.
View Article and Find Full Text PDFAdaptation to novel dynamics requires learning a motor memory, or a new pattern of predictive feedforward motor commands. Recently, we demonstrated the upregulation of rapid visuomotor feedback gains early in curl force field learning, which decrease once a predictive motor memory is learned. However, even after learning is complete, these feedback gains are higher than those observed in the null field trials.
View Article and Find Full Text PDFGoal-directed reaching movements are guided by visual feedback from both target and hand. The classical view is that the brain extracts information about target and hand positions from a visual scene, calculates a difference vector between them, and uses this estimate to control the movement. Here we show that during fast feedback control, this computation is not immediate, but evolves dynamically over time.
View Article and Find Full Text PDFRecent studies have highlighted the modulation and control of feedback gains as support for optimal feedback control. While many experiments contrast feedback gains across different environments, only a few have demonstrated the appropriate modulation of feedback gains from one movement to the next. Here we extend previous work by examining whether different visuomotor feedback gains can be learned for different directions of movement or perturbation directions in the same posture.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Impedance control can be used to stabilize the limb against both instability and unpredictable perturbations. Limb posture influences motor noise, energy usage and limb impedance as well as their interaction. Here we examine whether subjects use limb posture as part of a mechanism to regulate limb stability.
View Article and Find Full Text PDFAt an early stage of learning novel dynamics, changes in muscle activity are mainly due to corrective feedback responses. These feedback contributions to the overall motor command are gradually reduced as feedforward control is learned. The temporary increased use of feedback could arise simply from the large errors in early learning with either unaltered gains or even slightly downregulated gains, or from an upregulation of the feedback gains when feedforward prediction is insufficient.
View Article and Find Full Text PDF