Monitoring water quality and river ecosystems is vital for maintaining public health and environmental sustainability. Over the past decade, data-driven methods have been extensively used for river water quality modeling, including dissolved oxygen (DO) concentrations. Despite advancements, challenges persist regarding accuracy, scalability, and adaptability of data-driven models to diverse environmental conditions.
View Article and Find Full Text PDFExisting artificial neural networks (ANNs) have attempted to efficiently identify underlying patterns in environmental series, but their structure optimization needs a trial-and-error process or an external optimization effort. This makes ANNs time consuming and more complex to be applied in practice. To alleviate these issues, we propose a stabilized ANNs, called SANN.
View Article and Find Full Text PDF