Publications by authors named "Sadra Sadeghi"

The aerobic and thermal stability of quantum-dot light-emitting diodes (QLEDs) is an important factor for the practical applications of these devices under harsh environmental conditions. We demonstrate all-solution-processed amber QLEDs with an external quantum efficiency (EQE) of > 14% with almost negligible efficiency roll-off (droop) and a peak brightness of > 600,000 cd/m, unprecedented for QLEDs fabricated under ambient air conditions. We investigate the device efficiency and brightness level at a temperature range between - 10 and 85 °C in a 5-step cooling/heating cycle.

View Article and Find Full Text PDF

Luminescent solar concentrators (LSCs) are simple and cost-effective solar energy-harvesting devices. Indium phosphide (InP)-based colloidal quantum dots (QDs) are promising QDs for efficient LSC devices due to their environmentally benign nature. One major challenge in LSC devices is reabsorption losses.

View Article and Find Full Text PDF

It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based type-II QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing.

View Article and Find Full Text PDF

The synthesis of heterostructured core-shell nanocrystals has attracted significant attention due to their wide range of applications in energy, medicine and environment. To further extend the possible nanostructures, non-epitaxial growth is introduced to form heterostructures with large lattice mismatches, which cannot be achieved by classical epitaxial growth techniques. Here, we report the synthetic procedure of Au@ZnTe core-shell nanostructures by cation exchange reaction for the first time.

View Article and Find Full Text PDF

Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs). For their widespread use, they need to simultaneously satisfy non-toxic material content, low reabsorption, high photoluminescence quantum yield, and large-scale production. Here, copper doping of zinc carboxylate-passivated InP core and nano-engineering of ZnSe shell facilitated high in-device quantum efficiency of QDs over 80%, having well-matched spectral emission profile with the photo-response of silicon solar cells.

View Article and Find Full Text PDF

The patterning of silk allows for manufacturing various structures with advanced functionalities for optical and tissue engineering and drug delivery applications. Here, we propose a high-resolution nanoscale patterning method based on field-emission scanning probe lithography (FE-SPL) that crosslinks the biomaterial silk on conductive indium tin oxide (ITO) promoting the use of a biodegradable material as resist and water as a developer. During the lithographic process, Fowler-Nordheim electron emission from a sharp tip was used to manipulate the structure of silk fibroin from random coil to beta sheet and the emission formed nanoscale latent patterns with a critical dimension (CD) of ∼50 nm.

View Article and Find Full Text PDF

Neural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers.

View Article and Find Full Text PDF

Magic clusters have attracted significant interest to explore the dynamics of quantum dot (QD) nucleation and growth. At the same time, CdSe magic-sized QDs reveal broadband emission in the visible wavelength region, which advantageously offer simple integration of a single-type of nanomaterial and high color rendering ability for white light-emitting diodes (LEDs). Here, we optimized the quantum yield of magic-sized CdSe QDs up to 22% via controlling the synthesis parameters without any shelling or post-treatment process and integrated them in liquid-state on blue LED to prevent the efficiency drop due to host-material effect.

View Article and Find Full Text PDF

In recent years, luminescent solar concentrators (LSCs) have received renewed attention as a versatile platform for large-area, high-efficiency, and low-cost solar energy harvesting. So far, artificial or engineered optical materials, such as rare-earth ions, organic dyes, and colloidal quantum dots (QDs) have been incorporated into LSCs. Incorporation of nontoxic materials into efficient device architectures is critical for environmental sustainability and clean energy production.

View Article and Find Full Text PDF

Interparticle energy transfer offers great promise to a diverse range of applications ranging from artificial solar energy harvesting to nanoscale rulers in biology. Here, we assembled InP/ZnS core/shell quantum dot monolayers via the Langmuir-Blodgett technique and studied the effect of ZnS shell thickness on the excitonic energy transfer within these core/shell quantum dots. Three types of InP-based core/shell quantum dot Langmuir-Blodgett assemblies with different ZnS shell thicknesses were assembled.

View Article and Find Full Text PDF

Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures.

View Article and Find Full Text PDF

Lithography, the transfer of patterns to a film or substrate, is the basis by which many modern technological devices and components are produced. However, established lithographic approaches generally use complex techniques, expensive equipment, and advanced materials. Here, we introduce a water-based microcontact printing method using silk that is simple, inexpensive, ecofriendly, and recyclable.

View Article and Find Full Text PDF

Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism.

View Article and Find Full Text PDF

Luminescent solar concentrators (LSCs) show promise because of their potential for low-cost, large-area, and high-efficiency energy harvesting. Stokes shift engineering of luminescent quantum dots (QDs) is a favorable approach to suppress reabsorption losses in LSCs; however, the use of highly toxic heavy metals in QDs constitutes a serious concern for environmental sustainability. Here, we report LSCs based on cadmium-free InP/ZnO core/shell QDs with type-II band alignment that allow for the suppression of reabsorption by Stokes shift engineering.

View Article and Find Full Text PDF

Today the high demand for electronics leads to massive production of waste, thus green materials based electronic devices are becoming more important for environmental protection and sustainability. The biomaterial based hydrogels are widely used in tissue engineering, but their uses in photonics are limited. In this study, silk fibroin protein in hydrogel form is explored as a bio-friendly alternative to conventional polymers for lens applications in light-emitting diodes.

View Article and Find Full Text PDF