Publications by authors named "Sadowska J"

Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis.

View Article and Find Full Text PDF

Low basal metabolic rate (BMR) is a risk factor for obesity, whereas elevation of non-shivering thermogenesis (NST) is a promising means to combat obesity. Because heat generated by NST covers thermogenic needs not fulfilled by BMR, one can expect the presence of a negative relationship between both parameters. Understanding of the mechanisms underlying this relationship is therefore important for interpretation of the results of translational experiments and the development of anti-obesity treatments.

View Article and Find Full Text PDF

The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks.

View Article and Find Full Text PDF

Cyclophosphamide (CPAm) is a widely used chemotherapeutic agent that exhibits potent anti-cancer properties but is often associated with debilitating side effects. Despite its efficacy, the management of CPAm-induced toxicities remains a significant clinical challenge. There has been growing interest in exploring complementary and alternative therapies to mitigate these adverse effects in recent years, and this may be a chance for the earthworm-derived preparation, Venetin-1.

View Article and Find Full Text PDF

The endocannabinoid system (ECS) plays a crucial role in reproductive health, but its function in postpartum dairy cows remains poorly understood. This study investigated the expression patterns of ECS-related genes in the endometrium of postpartum dairy cows and their associations with endometrial health and the presence of fatty liver. Endometrial biopsies were collected from 22 Holstein Friesian cows at 4 and 7 weeks postpartum.

View Article and Find Full Text PDF

Energy conservation associated with hibernation is maximized at the intersection of low body temperature (T), long torpor bouts, and few interbout arousals. In the arctic ground squirrel (Urocitellus parryii), energy conservation during hibernation is best achieved at ambient temperatures (T) around 0 °C; however, they spend the majority of hibernation at considerably lower T. Because arctic ground squirrels switch to mixed fuel metabolism, including protein catabolism, at extreme low T of hibernation, we sought to investigate how microbial urea-nitrogen recycling is used under different thermal conditions.

View Article and Find Full Text PDF

The present work aims to develop optimized scaffolds for bone repair by incorporating mesoporous nanoparticles into them, thereby combining bioactive factors for cell growth and preventing rapid release or loss of effectiveness. We synthesized biocompatible and biodegradable scaffolds designed for the controlled codelivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2). Active agents in dendritic silica/titania mesoporous nanoparticles (DSTNs) were incorporated at different weight percentages (0, 2, 5, 7, 9, and 10 wt %) into a matrix of polycaprolactone (PCL) and polyethylene glycol (PEG) nanofibers, forming the CUR-BMP-2@DSTNs/PCL-PEG delivery system (S0, S2, S5, S7, S9, and S10, respectively, with the number showing the weight percentage).

View Article and Find Full Text PDF

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation.

View Article and Find Full Text PDF

Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed.

View Article and Find Full Text PDF

Laboratory mice are commonly used for studies emulating human metabolism. To render human energetics, their ratio of daily (DEE) to basal (BMR) energy expenditure of 1.7-1.

View Article and Find Full Text PDF

Very large bone defects significantly diminish the vascular, blood, and nutrient supply to the injured site, reducing the bone's ability to self-regenerate and complicating treatment. Delivering nanomedicines from biomaterial scaffolds that induce host cells to produce bone-healing proteins is emerging as an appealing solution for treating these challenging defects. In this context, microRNA-26a mimics (miR-26a) are particularly interesting as they target the two most relevant processes in bone regeneration-angiogenesis and osteogenesis.

View Article and Find Full Text PDF

This study aimed at finding whether healthy eating habits could be introduced to and maintained by chronically mentally ill permanent residents of a nursing home. Of interest was also if the effects of the dietary intervention would be observable as improved carbohydrate and lipid metabolism indicators were selected. Assays covered 30 antipsychotics-treated residents diagnosed with schizophrenia.

View Article and Find Full Text PDF

The Position Statement on the principles of nutrition for children aged 1-3 years emphasizes that proper nutrition of children at this age determines their optimal psychometric development and has beneficial effects on the process nutritional programming, which reduces the risk of diet-related diseases in adulthood. Continued breastfeeding in the post-infancy period, together with the proper introduction of complementary foods, supplies all the nutritional needs of the child. A varied selection of food products is important to balance out the diet of a child in the context of energy and nutrient needs.

View Article and Find Full Text PDF

Relationships between diet, sex hormone concentrations, and the estrous cycle are important from the perspective of infertility and estrogen-dependent disease prevention and treatment. Four dietary interventions reflecting modern eating behaviors were explored. The study involved 50 female rats divided into five feeding groups.

View Article and Find Full Text PDF

Since the discovery that nanostructured surfaces were able to kill bacteria, many works have been published focusing on the design of nanopatterned surfaces with antimicrobial properties. Synthetic bone grafts, based on calcium phosphate (CaP) formulations, can greatly benefit from this discovery if adequate nanotopographies can be developed. However, CaP are reactive materials and experience ionic exchanges when placed into aqueous solutions which may in turn affect cell behaviour and complicate the interpretation of the bactericidal results.

View Article and Find Full Text PDF

Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects.

View Article and Find Full Text PDF

Postnatal growth in birds and mammals is the time of highest vulnerability and relatively high energy demands and therefore shapes the organisms' future outcomes. Several different factors might impose limitations on growth in juveniles, one of them being the efficiency of the digestive process and size of the gastrointestinal tract. We tested the gut size-growth rate relationship using a unique experimental model-mice from a selection experiment designed to produce two lines with divergent levels of basal metabolic rate (BMR): the high BMR (H-BMR) and low BMR (L-BMR) line types.

View Article and Find Full Text PDF

The basal metabolic rate (BMR) accounts for 60-70% of the daily energy expenditure (DEE) in sedentary humans and at least 50% of the DEE in laboratory mice in the thermoneutral zone. Surprisingly, however, the significance of the variation in the BMR is largely overlooked in translational research using such indices as physical activity level (PAL), i.e.

View Article and Find Full Text PDF

Circulating cell-free DNA from blood plasma of cancer patients can be used to non-invasively interrogate somatic tumor alterations. Here we develop MSK-ACCESS (Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status), an NGS assay for detection of very low frequency somatic alterations in 129 genes. Analytical validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.

View Article and Find Full Text PDF

The aim of the study was to assess the effect of different models of sucrose intake on carbohydrate-lipid metabolism and changes in oxidant balance in the ovaries and uterus of rats. Animals were divided into three groups: I-basic feed, II-feed contains 8% of sucrose, III-alternately every second week the basic feed and modified feed contains 16% of sucrose. The diet containing 8% of sucrose was found to result in an increased activity of antioxidant enzymes in the blood, with unchanged malonylodialdehyde concentration.

View Article and Find Full Text PDF

This study aimed at assessing the behaviour of Konik geldings and mares, kept in a stable and in a free-range system, during behavioural tests regarded as a determinant of the exploration urge. A total of 19 Konik horses kept in individual stables and in a free-range system were included in the study. The experiment was conducted in five phases separated by five-day breaks.

View Article and Find Full Text PDF

Cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) offers unique opportunities for genomic profiling of tumors involving the central nervous system but remains uncommonly used in clinical practice. We describe our clinical experience using cfDNA from CSF for routine molecular testing using Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (targeting 468 cancer-related genes). In all, 148 cfDNA samples were assessed, comparing results of cfDNA versus genomic DNA (gDNA; gDNA from cell pellets) derived from the same CSF sample and the primary tumor.

View Article and Find Full Text PDF

Core-shell scaffolds offer a promising regenerative solution to debilitating injuries to anterior cruciate ligament (ACL) thanks to a unique biphasic structure. Nevertheless, current core-shell designs are impaired by an imbalance between permeability, biochemical and mechanical cues. This study aimed to address this issue by creating a porous core-shell construct which favors cell infiltration and matrix production, while providing mechanical stability at the site of injury.

View Article and Find Full Text PDF