Publications by authors named "Sadovnikov A"

The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields.

View Article and Find Full Text PDF

Aim      Comparative analysis of the effectiveness of a new approach, "SMART rehabilitation of patients after heart valve replacement", which includes, in addition to face-to-face training, Internet technologies in the form of video conferencing, the mobile application "Calculation of the warfarin dose", and a traditional program for educating patients after correction of valvular defects.Material and methods  The study included 190 patients with prosthetic heart valves. The main group consisted of 98 patients who completed a distance learning course.

View Article and Find Full Text PDF

The annual production of plastic waste is a serious ecological problem as it causes substantial pollution of the environment. Polyethylene terephthalate, a material usually found in disposable plastic bottles, is one of the most popular material used for packaging in the world. In this paper, it is proposed to recycle polyethylene terephthalate waste bottles into benzene-toluene-xylene fraction using a heterogeneous nickel phosphide catalyst formed in situ during the polyethylene terephthalate recycling process.

View Article and Find Full Text PDF

Hybrid composites based on electroactive polymers of diphenylamine-2-carboxylic acid (PDPAC) and highly porous carbon with a hierarchical pore structure were prepared for the first time. Activated IR-pyrolyzed polyacrylonitrile (IR-PAN-a), characterized by a highly developed surface, was chosen as a highly porous N-doped carbon component of the hybrid materials. IR-PAN-a was prepared using pyrolysis of polyacrylonitrile (PAN) in the presence of potassium hydroxide under IR radiation.

View Article and Find Full Text PDF

An array of highly oriented anatase nanoparticles was successfully prepared from NHTiOF with the assistance of polyetheleneglycol-400 at 450 °C. The study showed the stability of obtained layered TiO-anatase close to 1200 °C. This research confirmed for the first time that the transition of mesocrystalline anatase to the rutile phase occurs between 1000 °C and 1200 °C, which is more than 400 °C higher than the transition of bulk TiO due to the used precursor.

View Article and Find Full Text PDF

The dry reforming of methane to syngas (DRM) is of increasing significance concerning, first, the production of raw materials for commercial organic/petrochemical syntheses and for hydrogen energetic, and, second, the utilization of two most harmful greenhouse gases. Herein, new SmCoO-based DRM catalysts derived from heterometallic precursors and operated without preliminary reduction are reported. For the first time, the effect of supercritical fluids-assisted modification of the SmCoO-derived catalysts combined with the re-oxidation of spent catalysts to SmCoO onto its long-term performance was studied.

View Article and Find Full Text PDF

Bulk MoP and WP were investigated and compared in guaiacol hydrodeoxygenation to phenol. The catalysts obtained were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and temperature-programmed desorption of NH (NH-TPD) analyses. MoP was shown to be more active than WP.

View Article and Find Full Text PDF

Here, we report on the experimental study of spin-wave propagation and interaction in the double-branched Mach-Zehnder interferometer (MZI) scheme. We show that the use of a piezoelectric plate (PP) with separated electrodes connected to each branch of the MZI leads to the tunable interference of the spin-wave signal at the output section. Using a finite element method, we carry out a physical investigation of the mechanisms of the impact of distributed deformations on the magnetic properties of YIG film.

View Article and Find Full Text PDF

We present analysis of the effect of Dzyaloshinskii-Moriya interaction (DMI) on spin wave nonreciprocity and bubble expansion asymmetry in Pt/Co/Ir/Co/Pt synthetic ferrimagnets with perpendicular magnetic anisotropy. We propose analysis of the DMI by Brillouin light scattering technique (BLS) and Kerr microscopy (MOKE) in the presence of interlayer exchange coupling strongly changing spin wave dispersion law and field dependences of domain wall velocity in comparison with those observed earlier in Ir/Co/Pt structures with a single Co layer. We have determined DMI values of each Co layer from unusually inverted dependence of velocity of the domain wall on in-plane magnetic field.

View Article and Find Full Text PDF

We demonstrated numerically the skyrmion formation in ultrathin nanodisks using a magnetic force microscopy tip. We found that the local magnetic field generated by the magnetic tip significantly affects the magnetization state of the nanodisks and leads to the formation of skyrmions. Experimentally, we confirmed the influence of the local field on the magnetization states of the disks.

View Article and Find Full Text PDF

Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives.

View Article and Find Full Text PDF

Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W) multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring how to control magnons — quantized spin waves — using laser pulses, which may lead to advanced applications like optomagnetic switching and energy-efficient information processing.
  • The study introduces a method that combines ultrafast magnetism with nanophotonics to efficiently excite spin dynamics in specially designed magnetic structures.
  • By applying a 1D grating of trenches to create nanoscale light localization, the researchers can manipulate the amplitude of different types of spin waves through adjustments in laser parameters, enhancing possibilities for selective spin control in magnonics and spintronics technologies.
View Article and Find Full Text PDF

Interfacial Dzyaloshinskii-Moriya interaction (DMI) is experimentally investigated in Pt/Co/Pt multilayer films under strain. A strong variation (from 0.1 to 0.

View Article and Find Full Text PDF

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction.

View Article and Find Full Text PDF

We report on the time-resolved investigation of current- and field-induced domain wall motion in the flow regime in perpendicularly magnetized microwires exhibiting antisymmetric exchange interaction by means of scanning transmission X-ray microscopy with a 200 ps time step. The sub-ns time step of the dynamical images allowed us to observe the absence of incubation times for the motion of the domain wall within an uncertainty of 200 ps, together with indications for a negligible inertia of the domain wall. Furthermore, we observed that, for short current and magnetic field pulses, the magnetic domain walls do not exhibit a tilting during their motion, providing a mechanism for the fast, tilt-free, current-induced motion of magnetic domain walls.

View Article and Find Full Text PDF

We observe and explain theoretically strain-induced spin-wave routing in the bilateral composite multilayer. By means of Brillouin light scattering and microwave spectroscopy, we study the spin-wave transport across three adjacent magnonic stripes, which are strain coupled to a piezoelectric layer. The strain may effectively induce voltage-controlled dipolar spin-wave interactions.

View Article and Find Full Text PDF

We have imaged Néel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 µm diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane field that opposes the magnetisation of the skyrmion bubble core moment applies pressure to the bubble and gradually compresses it to a diameter of approximately 100 nm.

View Article and Find Full Text PDF

Nonlocal spin injection has been recognized as an efficient mechanism for creation of pure spin currents not tied to the electrical charge transfer. Here we demonstrate experimentally that it can induce coherent magnetization dynamics, which can be utilized for the implementation of novel microwave nano-sources for spintronic and magnonic applications. We show that such sources exhibit a small oscillation linewidth and are tunable over a wide frequency range by the static magnetic field.

View Article and Find Full Text PDF

The formation mechanism of polycyclic aromatic hydrocarbons (PAH) with three fused aromatic rings starting from naphthalene has been studied using accurate ab initio G3(MP2,CC)//B3LYP/6-311G** calculations followed by the kinetic analysis of various reaction pathways and computations of relative product yields. The results reveal new insights into the classical hydrogen abstraction-C2H2 addition (HACA) scheme of PAH growth. The HACA mechanism has been shown to produce mostly cyclopentafused PAHs instead of PAHs with six-member rings only, in contrast to the generally accepted view on this mechanism.

View Article and Find Full Text PDF

Concomitance of infiltrative tuberculosis and lung cancer cannot be considered to be rare and sporadic. Thirty-seven patients with concomitance of these two diseases were followed up at the phthisiosurgical department of the Kostroma regional tuberculosis dispensary in 1979 to August 2005. Uni- and bilateral tuberculosis affliction occurred in 14 and 23 patients, respectively.

View Article and Find Full Text PDF

The paper describes a case of diffuse leiomyomatosis of the lung in a 45-year-old female. Leiomyomatosis, a disease noted in females, is considered to include 4 types of multiple smooth muscle lesions: 1) benign metastasizing leiomyoma; 2) lymphangioleiomyomatosis; 3) leiomyomatous peritoneal dissemination; and 4) intravenous leiomyomatosis. The authors present a classification proposed by E.

View Article and Find Full Text PDF