The design of masonry structures requires accurate estimation of compressive strength (CS) of hollow concrete masonry prisms. Generally, the CS of masonry prisms is determined by destructive laboratory testing which results in time and resource wastage. Thus, this study aims to provide machine learning-based predictive models for CS of hollow concrete masonry blocks using different algorithms including Multi Expression Programming (MEP), Random Forest Regression (RFR), and Extreme Gradient Boosting (XGB) etc.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Fiber-reinforced polymers (FRPs) are increasingly being used as a composite material in concrete slabs due to their high strength-to-weight ratio and resistance to corrosion. However, FRP-reinforced concrete slabs, similar to traditional systems, are susceptible to punching shear failure, a critical design concern. Existing empirical models and design provisions for predicting the punching shear strength of FRP-reinforced concrete slabs often exhibit significant bias and dispersion.
View Article and Find Full Text PDFA crucial factor in the efficient design of concrete sustainable buildings is the compressive strength (Cs) of eco-friendly concrete. In this work, a hybrid model of Gradient Boosting Regression Tree (GBRT) with grid search cross-validation (GridSearchCV) optimization technique was used to predict the compressive strength, which allowed us to increase the precision of the prediction models. In addition, to build the proposed models, 164 experiments on eco-friendly concrete compressive strength were gathered for previous researches.
View Article and Find Full Text PDF