Methylene blue (MB) is an effective treatment for methemoglobinemia, ifosfamide-induced encephalopathy, cyanide poisoning, and refractory vasoplegia. However, clinical case reports and preclinical studies indicate potentially neurotoxic activity of MB at certain concentrations. The exact mechanisms of MB neurotoxicity are not known, and while the effects of MB on neuronal tissue from different brain regions and myenteric ganglia have been examined, its effects on primary afferent neurons from dorsal root ganglia (DRG) have not been studied.
View Article and Find Full Text PDFThe present work aims at evaluating the in vitro biocompatibility, antibacterial activity and antioxidant capacity of the fabricated and optimized Alginate/Chitosan nanoparticles (ALG/CSNPs) and quercetin loaded Alginate/Chitosan nanoparticles (Q-ALG/CSNPs) with an improved biological efficacy on the hydrophobic flavonoid.The physicochemical properties were determined by TEM and FTIR analysis. The nanoparticles evaluated for the encapsulation of quercetin exerted % encapsulation efficiency (EE) that varied between 76 and 82.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2014
Development of novel antidiabetic agents using various organic compounds and biomolecules has been in practice for a long time. Recently, nanomaterials are also being used in antidiabetic studies for their unique properties such as small size, biocompatibility and ability to penetrate cell membrane for carrying drugs. Herein, in vivo antidiabetic activity of gold nanoparticles (AuNPs) synthesized using the antidiabetic potent plant Gymnema sylvestre R.
View Article and Find Full Text PDFIn the present investigation, the cardioprotective nature of proanthocyanidin (PAC)-synthesized gold nanoparticles (AuNPs) is addressed in detail. There was a rapid reduction of gold metal ions by PAC and the new-genre AuNPs exhibited remarkable in vitro stability both in biological and chemical solutions. Transmission electron microscopy (TEM) indicated that the newly formed nanoparticles ranged in size from 17 to 29 nm (∼24 nm).
View Article and Find Full Text PDFAs the nano revolution unfolds, it is imperative to integrate nanoscience and medicine. The secret gleaned from nature have led to the generation of biogenic technologies for the fabrication of advanced nanomaterials. Present investigation discloses the gold nanoparticles biosynthesizing capability of the flower of pharmacologically important tree .
View Article and Find Full Text PDF