Whether freshwater fish colonize remote islands following tectonic or transoceanic dispersal remains an evolutionary puzzle. Integrating dating of known tectonic events with phylogenomics and current species distribution, we find that killifish species distribution is not explained by species dispersal by tectonic drift only. Investigating the colonization of a nonannual killifish (golden panchax, Pachypanchax playfairii) on the Seychelle islands, we found genetic support for transoceanic dispersal and experimentally discovered an adaptation to complete tolerance to seawater.
View Article and Find Full Text PDFDespite many attempts to introduce evolutionary models that permit substitutions to instantly alter more than one nucleotide in a codon, the prevailing wisdom remains that such changes are rare and generally negligible or are reflective of non-biological artifacts, such as alignment errors. Codon models continue to posit that only single nucleotide change have non-zero rates. Here, we develop and test a simple hierarchy of codon-substitution models with non-zero evolutionary rates for only one-nucleotide (1H), one- and two-nucleotide (2H), or any (3H) codon substitutions.
View Article and Find Full Text PDFA number of evolutionary hypotheses can be tested by comparing selective pressures among sets of branches in a phylogenetic tree. When the question of interest is to identify specific sites within genes that may be evolving differently, a common approach is to perform separate analyses on subsets of sequences and compare parameter estimates in a post hoc fashion. This approach is statistically suboptimal and not always applicable.
View Article and Find Full Text PDFIt is standard practice to model site-to-site variability of substitution rates by discretizing a continuous distribution into a small number, K, of equiprobable rate categories. We demonstrate that the variance of this discretized distribution has an upper bound determined solely by the choice of K and the mean of the distribution. This bound can introduce biases into statistical inference, especially when estimating parameters governing site-to-site variability of substitution rates.
View Article and Find Full Text PDFMost molecular evolutionary studies of natural selection maintain the decades-old assumption that synonymous substitution rate variation (SRV) across sites within genes occurs at levels that are either nonexistent or negligible. However, numerous studies challenge this assumption from a biological perspective and show that SRV is comparable in magnitude to that of nonsynonymous substitution rate variation. We evaluated the impact of this assumption on methods for inferring selection at the molecular level by incorporating SRV into an existing method (BUSTED) for detecting signatures of episodic diversifying selection in genes.
View Article and Find Full Text PDFHYpothesis testing using PHYlogenies (HyPhy) is a scriptable, open-source package for fitting a broad range of evolutionary models to multiple sequence alignments, and for conducting subsequent parameter estimation and hypothesis testing, primarily in the maximum likelihood statistical framework. It has become a popular choice for characterizing various aspects of the evolutionary process: natural selection, evolutionary rates, recombination, and coevolution. The 2.
View Article and Find Full Text PDF