Stud Health Technol Inform
August 2019
In this paper, we trained a set of Portuguese clinical word embedding models of different granularities from multi-specialty and multi-institutional clinical narrative datasets. Then, we assessed their impact on a downstream biomedical NLP task of Urinary Tract Infection disease identification. Additionally, we intrinsically evaluated our main model using an adapted version of Bio-SimLex for the Portuguese language.
View Article and Find Full Text PDFAMIA Jt Summits Transl Sci Proc
May 2019
Disease named entity recognition (NER) is a critical task for most biomedical natural language processing (NLP) applications. For example, extracting diseases from clinical trial text can be helpful for patient profiling and other downstream applications such as matching clinical trials to eligible patients. Similarly, disease annotation in biomedical articles can help information search engines to accurately index them such that clinicians can easily find relevant articles to enhance their knowledge.
View Article and Find Full Text PDFThis paper explores cutting-edge deep learning methods for information extraction from medical imaging free text reports at a multi-institutional scale and compares them to the state-of-the-art domain-specific rule-based system - PEFinder and traditional machine learning methods - SVM and Adaboost. We proposed two distinct deep learning models - (i) CNN Word - Glove, and (ii) Domain phrase attention-based hierarchical recurrent neural network (DPA-HNN), for synthesizing information on pulmonary emboli (PE) from over 7370 clinical thoracic computed tomography (CT) free-text radiology reports collected from four major healthcare centers. Our proposed DPA-HNN model encodes domain-dependent phrases into an attention mechanism and represents a radiology report through a hierarchical RNN structure composed of word-level, sentence-level and document-level representations.
View Article and Find Full Text PDFStud Health Technol Inform
December 2016
The emerging penetration of Health IT in Latin America (especially in Brazil) has exacerbated the ever-increasing amount of Electronic Health Record (EHR) clinical free text documents.This imposes a workflow efficiency challenge on clinicians who need to synthesize such documents during the typically time-constrained patient care. We propose an ontology-driven semantic search framework that effectively supports clinicians' information synthesis at the point of care.
View Article and Find Full Text PDF