To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory.
View Article and Find Full Text PDFInt J Biol Macromol
January 2023
Dyes are emerging as harmful pollutants, which is one of major issues for the environmentalists and there is a urgent need for the removal of dyes from the effluents. In this context, the adsorption technology has been extensively used as an effective tool for the removal of dyes from the aqueous phase. This technique uses low-cost adsorbents and the cellulosic material is a biodegradable, cost-effective and renewable polymer, which is not soluble in the majority of solvents because of its crystalline nature and hydrogen bonding.
View Article and Find Full Text PDF