Publications by authors named "Sadi Ibrahim Haruna"

The effectiveness of repair work relies on whether the interface substrate can achieve sufficient bond strength when subjected to numerous stresses. This study investigated the bond properties of repaired normal concrete (NC-to-NC) elements, including cube, beam, and U-shaped specimens, after undergoing natural fracture due to flexural and tensile stresses. The specimens were repaired using a polyurethane (PU) matrix by gluing the two parts and applying compression, splitting, and drop-weight impact (DWI) tests to evaluate the bond strength properties.

View Article and Find Full Text PDF

As internal curing self-healing agents in concrete repair, the basic properties of superabsorbent polymers (SAPs), such as water absorption and release properties, are generally affected by several factors, including temperature and humidity solution properties and SAP particle size, which regulate the curing effect and the durability of cementitious composites. This study aimed to investigate the water retention capacities of SAPs in an alkaline environment over extended periods by incorporating liquid sodium silicate (SS) into SAP-water mixtures and examining the influence of temperature. The influence of SAP particle size on mortar's water absorption capacity and mechanical behavior was investigated.

View Article and Find Full Text PDF

Polyurethane (PU) composite is increasingly used as a repair material for civil engineering infrastructure, including runway, road pavement, and buildings. Evaluation of polyurethane grouting (PUG) material is critical to achieve a desirable maintenance effect. This study aims to evaluate the flexural behavior of normal concrete repaired with polyurethane grout (NC-PUG) under a three-point bending test.

View Article and Find Full Text PDF

Calcium carbide residue (CCR) is generated from acetylene gas production, and it is highly alkaline and contains a very high amount of calcium. Nano silica (NS), on the other hand, is mostly used in combination with other pozzolanic materials in concrete to ignite the reactivity of the material and to improve the properties of the concrete. This study investigated the effect of CCR incorporated in concrete mixtures to partially replace cement content at 0 to 30% (interval of 7.

View Article and Find Full Text PDF