Background: Pharmacology is a crucial component of medications administration in nursing, yet nursing students generally find it difficult and self-rate their pharmacology skills as low.
Objectives: To evaluate nursing students learning pharmacology with the Pharmacology Inter-Leaved Learning-Cells environment, a novel approach to modeling biochemical interactions using a multiscale, computer-based model with a complexity perspective based on a small set of entities and simple rules. This environment represents molecules, organelles and cells to enhance the understanding of cellular processes, and combines these cells at a higher scale to obtain whole-body interactions.
Background And Purpose: Selective MAO type B (MAO-B) inhibitors are effective in potentiation of the clinical effect of L-DOPA in Parkinson's disease, but dopamine (DA) is deaminated mainly by MAO type A (MAO-A) in rat brain. We sought to clarify the roles of MAO-A and MAO-B in deamination of DA formed from exogenous L-DOPA in rat striatum depleted of dopaminergic, or both dopaminergic and serotonergic innervations. We also studied the effect of organic cation transporter-3 (OCT-3) inhibition by decinium-22 on extracellular DA levels following L-DOPA.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
November 2007
Dopamine behaves mainly as a MAO-A substrate in rodent brain, but selective inhibition of MAO-B results in an increased turning activity following L-DOPA administration in hemi-Parkinsonian rodents. Unilateral substantia nigra dopaminergic denervation results in serotonergic hyper-innervation which may increase the contribution of MAO-A in the denervated striatum. Possibly as a result of this, there was no change in striatal MAO-A activity when 95% of dopaminergic innervation was reduced by 6-hydroxydopamine, as assessed by apomorphine-induced turning activity.
View Article and Find Full Text PDF