Environ Sci Pollut Res Int
December 2024
Wetlands represent a crucial category of aquatic ecosystems that face numerous threats, such as increasing population density, alterations in land-use, climate change, excessive extraction of water resources, and inadequate construction of reservoirs. As a result of these challenges, wetlands cannot perform their essential functions, which include meeting human demands, supporting tourism, mitigating dust storms, and maintaining the biodiversity of flora and fauna. Accordingly, assessing their health and service performance is essential.
View Article and Find Full Text PDFMu-opioid receptor (μ-OR) signaling in forebrain sites including nucleus accumbens (Acb) and ventromedial prefrontal cortex (vmPFC) modulates reward-driven feeding and may play a role in the pathophysiology of disordered eating. In preclinical models, intra-Acb or intra-vmPFC μ-OR stimulation causes overeating and vigorous responding for food rewards. These effects have been studied mainly in male animals, despite demonstrated sex differences and estrogen modulation of central reward systems.
View Article and Find Full Text PDFThe present study investigated immediate versus delayed effects of estrogen replacement in ovariectomized (OVX) rats on hyperphagia elicited by gamma-aminobutyric acid (GABA)-A-agonist (muscimol) infusions into the nucleus accumbens shell (AcbSh). First, because intra-AcbSh muscimol-induced feeding has never been explored in OVX rats, a dose-effect curve was generated and compared to sham-operated males, the current point of reference in the literature. Muscimol (5, 10, 25, and 50 ng) increased food intake in both sexes, and both sexes reached the same asymptotic level of intake.
View Article and Find Full Text PDFSubregions within insular cortex and medial prefrontal cortex (mPFC) have been implicated in eating disorders; however, the way these brain regions interact to produce dysfunctional eating is poorly understood. The present study explored how two mPFC subregions, the infralimbic (IL) and prelimbic (PRL) cortices, regulate sucrose hyperphagia elicited specifically by a neurochemical manipulation of the agranular/dysgranular region of gustatory insula (AI/DI). Using intra-AI/DI infusion of the mu-opioid receptor (µ-OR) agonist, DAMGO (1 µg), sucrose hyperphagia was generated in ad-libitum-maintained rats, while in the same rat, either the IL or prelimbic (PRL) subregion of mPFC was inactivated bilaterally with muscimol (30 ng).
View Article and Find Full Text PDFOpioid neurotransmission has been implicated in psychiatric disorders featuring impaired control over appetitive motivation, such as addiction and binge-eating disorder. We have previously shown that infusions of the μ-opioid receptor (μOR) agonist DAMGO into the ventromedial prefrontal cortex (vmPFC) induced hyperphagia, increased motor activity, and augmented sucrose-reinforced responding in the task progressive ratio (PR) task, which assesses the motivational value of an incentive. These effects were not reproduced by intra-PFC infusion of a variety of dopamine (DA) agonists and antagonists, suggesting that manipulation of intra-PFC DA systems alone is not sufficient to reproduce μOR-like effects.
View Article and Find Full Text PDFDistinguishing the functionality of C-H···O hydrogen bonds (HBs) remains challenging, because their properties are difficult to quantify reliably. Herein, we present a study of the model methane-formaldehyde complex (MFC). Six stationary points on the MFC potential energy surface (PES) were obtained at the CCSD(T)/ANO2 level.
View Article and Find Full Text PDFA theoretical study on the NMR shifts of the hydrogen bond network around the chromophore, para-coumaric acid (pCA), of photoactive yellow protein (PYP) is presented. Previous discrepancies between theoretical and experimental studies are resolved by our findings of a previously unknown rapid conformational exchange near the active site of PYP. This exchange caused by the rotation of Thr50 takes place in the ground state of PYP's active site and results in three effectively energetically equal conformations characterized by the formation of new hydrogen bonds, all of which contribute to the overall NMR signals of the investigated protons.
View Article and Find Full Text PDFHuman DNA glycosylase, hOGG1, is known to perform DNA repair by cleaving oxidized guanine (8OG) from the DNA. Despite numerous experimental and theoretical investigations, the underlying selective molecular mechanism has remained a mystery. Here we present a mechanism that explains how hOGG1's catalytic pocket is able to host an undamaged guanine base, but is not able to cleave it from the DNA.
View Article and Find Full Text PDFA microanalysis of hunger-driven and palatability-driven feeding was carried out after muscimol-mediated inactivation of two frontal regions in rats, the agranular/dysgranular insular cortex (AIC) and the ventromedial prefrontal cortex (vmPFC). Food and water intake, feeding microstructure, and general motor activity were measured under two motivational conditions: food-deprived rats given standard chow or ad libitum-fed rats given a palatable chocolate shake. Muscimol infusions into the AIC diminished intake, total feeding duration, and average feeding bout duration for the palatable-food condition only but failed to alter exploratory-like behavior (ambulation or rearing).
View Article and Find Full Text PDFThe ubiquitous occurrence of DNA damages renders its repair machinery a crucial requirement for the genomic stability and the survival of living organisms. Deficiencies in DNA repair can lead to carcinogenesis, Alzheimer, or Diabetes II, where increased amounts of oxidized DNA bases have been found in patients. Despite the highest mutation frequency among oxidized DNA bases, the base-excision repair process of oxidized and ring-opened guanine, FapydG (2,6-diamino-4-hydroxy-5-formamidopyrimidine), remained unclear since it is difficult to study experimentally.
View Article and Find Full Text PDFOpioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control.
View Article and Find Full Text PDFClassical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
Living organisms protect the genome against external influences by recognizing and repairing damaged DNA. A common source of gene mutation is the oxidized guanine, which undergoes base excision repair through cleavage of the glycosidic bond between the ribose and the nucleobase of the lesion. We unravel the repair mechanism utilized by bacterial glycosylase, MutM, using quantum-chemical calculations involving more than 1000 atoms of the catalytic site.
View Article and Find Full Text PDFThree new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU).
View Article and Find Full Text PDFBackground: There is much interest in exploring whether reward-driven feeding can produce druglike plasticity in the brain. The gamma-aminobutyric acid (GABA) system in the nucleus accumbens (Acb) shell, which modulates hypothalamic feeding systems, is well placed to "usurp" homeostatic control of feeding. Nevertheless, it is unknown whether feeding-induced neuroadaptations occur in this system.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2011
The photophysics of roseoflavin in three different environments is investigated by using ab initio and quantum mechanics/molecular mechanics methods. Intramolecular charge transfer is shown to be responsible for the quenching of the fluorescence in the gas phase, and in the water environment. However, for the roseoflavin incorporated into the blue light using flavin (BLUF) protein environment (substituting the native flavin) no such deactivation is found.
View Article and Find Full Text PDFThe intermolecular interactions of the photodamaged cyclobutane pyrimidine dimer (CPD) lesion with adjacent nucleobases in the native intrahelical DNA double strand are investigated at the level of density functional theory symmetry-adapted perturbation theory (DFT-SAPT) and compared to the original (or repaired) case with pyrimidines (TpT) instead of CPD. The CPD aggregation is on average destabilized by about 6 kcal mol(-1) relative to that involving TpT. The effect of destabilization is asymmetric, that is, it involves a single H-bonding (Watson-Crick (WC) type) base-pair interaction.
View Article and Find Full Text PDFFrontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex.
View Article and Find Full Text PDFUV irradiation of DNA can lead to the formation of mutagenic (6-4) pyrimidine-pyrimidone photolesions. The (6-4) photolyases are the enzymes responsible for the photoinduced repair of such lesions. On the basis of the recently published crystal structure of the (6-4) photolyase bound to DNA [Maul et al.
View Article and Find Full Text PDFBased on QM/MM calculations using a combination of time-dependent Hartree-Fock and coupled cluster response theory a mechanism is proposed for the photocycle of blue light using flavin (BLUF) domains in the signaling/light adapted conformation. In analogy to the dark-adapted form, a charge transfer state drives proton transfer from the highly conserved tyrosine residue to the flavin chromophore. The latter step is mediated by the adjacent glutamine residue, which, in the light adapted conformation, exists as its imidic tautomer.
View Article and Find Full Text PDFOn the basis of extensive first-principle calculations within the framework of quantum mechanics/molecular mechanics (QM/MM), a conclusive mechanism for the formation of the signaling state of blue light using flavin (BLUF) domain proteins is proposed which is compatible with the experimental data presently available. Time-dependent density functional, as well as advanced coupled cluster response theory was employed for the QM part in order to describe the relevant excited states. One of the key residues involved in the mechanism is the glutamine adjacent to the flavin chromophore.
View Article and Find Full Text PDFThe photophysical behavior of a phenothiazine-phenyl-isoalloxazine dye dyad, a model system for blue-light photoreceptors functioning on the basis of photoinduced electron transfer, was investigated by employing a combination of time-dependent density functional and coupled-cluster response theory. A conical intersection between a "bright" locally excited and a "dark" charge-transfer state was found in the low-energy region of the corresponding potential energy surfaces. We propose that, for the solvated dyad, this conical intersection is responsible for the experimentally observed fast fluorescence quenching in that system.
View Article and Find Full Text PDFNeural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of learning (acquisition or consolidation) these receptors are recruited, nor is it known what role AMPA/kainate receptors have in these processes. Here we show that pre-trial intra-NAc core administration of the NMDA, AMPA/KA, and D1 receptor antagonists AP-5 (1 microg/0.
View Article and Find Full Text PDF