A new approach has recently emerged in graphene synthesis by direct laser writing (LIG), which is highly economical and scalable, unlike previous methods. Here, the sputtering method has been used to coat silver onto the laser-induced graphene-based sensor. The results demonstrate that the chosen approach substantially impacts the expected outcomes.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
This paper reports a flexible and wearable piezoresistive strain sensor composed of the LIG/PDMS nanocomposite. LIG was first prepared on commercial Kapton tape by CO laser scanning. The presence of carbon atoms and their high ratio compared to oxygen atoms were confirmed using XPS, XRD, and Raman tests.
View Article and Find Full Text PDFMicroRNA (miRNA) is a type of short, non-coding nucleic acid molecule that plays essential roles in diagnosing and prognosing various types of cancer. MiRNA is abundantly present in skin interstitial fluid (ISF), providing real-time and localized physiological information. Hydrogel microneedle (HMN) patches enable miRNA collection in a fast, pain-free, minimally invasive, and user-friendly manner.
View Article and Find Full Text PDFCurrent methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex.
View Article and Find Full Text PDFContext: Sometimes, manipulating the geometry or creating a defect can help the engineering of the nanostructured properties, such as increasing the frequency sensitivity of graphene nanosheets as a mass sensor by changing the geometry of the structure in a triangular shape and also by creating a vacancy or making nanodiodes in a triangular shape, which restricts the flow of heat in one direction and expands it in another direction. Then, the mechanical properties of the triangular geometry of graphene nanosheets have an excellent value for future devices. The results of the molecular dynamics study can illustrate the mechanical properties of graphene sheets well, which is particularly important.
View Article and Find Full Text PDFDiabetic ketoacidosis (DKA), a severe complication of type 1 diabetes (T1D), is triggered by production of large quantities of ketone bodies, requiring patients with T1D to constantly monitor their ketone levels. Here, a skin-compatible hydrogel microneedle (HMN)-continuous ketone monitoring (HMN-CKM) device is reported. The sensing mechanism relies on the catechol-quinone chemistry inherent to the dopamine (DA) molecules that are covalently linked to the polymer structure of the HMN patch.
View Article and Find Full Text PDFContinuous monitoring of clinically relevant biomarkers within the interstitial fluid (ISF) using microneedle (MN)-based assays, has the potential to transform healthcare. This study introduces the Wearable Aptalyzer, an integrated system fabricated by combining biocompatible hydrogel MN arrays for ISF extraction with an electrochemical aptamer-based biosensor for in situ monitoring of blood analytes. The use of aptamers enables continuous monitoring of a wide range of analytes, beyond what is possible with enzymatic monitoring.
View Article and Find Full Text PDFIn this article, the formation of laser-induced graphene on the two natural polymers, cellulose, and lignin, as precursors was investigated with molecular dynamics simulations and some experiments. These eco-friendly polymers provide significant industrial advantages due to their low cost, biodegradability, and recyclable aspects. It was discovered during the simulation that LIG has numerous defects and a porous structure.
View Article and Find Full Text PDFAdsorption-based atmospheric water harvesting has emerged as a compelling solution in response to growing global water demand. In this context, Metal-organic frameworks (MOFs) have garnered considerable interest due to their unique structure and intrinsic porosity. Here, MOF 801 was synthesized using two different methods: solvothermal and green room temperature synthesis.
View Article and Find Full Text PDFMethane is the main component of shale gas and is adsorbed in shale pores. Methane adsorption not only affects the estimation of shale gas reserves but also reduces extraction efficiency. Therefore, investigating the behavior of methane adsorption in shale reservoirs is important for evaluating shale gas resources, as well as understanding its desorption and displacement from the nanochannels of shale gas reservoirs.
View Article and Find Full Text PDFAlthough science has made great strides in recent years, access to fresh water remains a major challenge for humanity due to water shortage for two-thirds of the world's population. Limited access to fresh water becomes more difficult due to the lack of natural resources of water. Many of these resources are also contaminated by human activities.
View Article and Find Full Text PDFPhase change materials (PCM) have had a significant role as thermal energy transfer fluids and nanofluids and as media for thermal energy storage. Molecular dynamics (MD) simulations, can play a significant role in addressing several thermo-physical problems of PCMs at the atomic scale by providing profound insights and new information. In this paper, the reviewed research is classified into five groups: pure PCM, mixed PCM, PCM containing nanofillers, nano encapsulated PCM, and PCM in nanoporous media.
View Article and Find Full Text PDFBiomass-derived porous carbons have been considered one of the most effective adsorbents for CO capture, due to their porous structure and high specific surface area. In this study, we successfully synthesized porous carbon from celery biomass and examined the effect of external adsorption parameters including time, temperature, and pressure on CO uptake in experimental and molecular dynamics (MD) simulations. Furthermore, the influence of carbon's surface chemistry (carboxyl and hydroxyl functionalities) and nitrogen type on CO capture were investigated utilizing MD simulations.
View Article and Find Full Text PDFCarbon based two-dimensional (2D) nanostructures have exceptional mechanical properties. Analysis of crack pathway in 2D graphenic materials allows for developing crack arrestors. Herein, we serve Molecular Dynamics (MD) to simulate the fracture behavior of 2D graphene-like boron-carbide (BC) by manipulating the crack length (10, 20, 30, 40, and 50 Å) and the crack arrestor (circular and square).
View Article and Find Full Text PDFIn this paper, by employing non-equilibrium molecular dynamics simulations (NEMD), the thermal conductance of the hybrid formed by polyaniline (C3N) and boron carbide (BC3) in both the armchair and zigzag configurations has been investigated. For this purpose, by creating superlattices with different periodic lengths (lp), the thermal conductivity of the entire hybrid at various lengths and also at infinity has been reported. In addition, the thermal conductivity of each sheet and also the interface thermal resistance (ITR) between them under various conditions have been computed and how this changes upon varying the length, width, temperature, uniaxial strain, point vacancy, and circular defects has been recorded and plotted.
View Article and Find Full Text PDFCarbon, nitrogen, and boron nanostructures are promising ballistic protection materials due to their low density and excellent mechanical properties. In this study, the ballistic properties of C3N and BC3 nanosheets against hypersonic bullets with Mach numbers greater than 6 were studied. The critical perforation conditions, and thus, the intrinsic impact strength of these 2D materials were determined by simulating ballistic curves of C3N and BC3 monolayers.
View Article and Find Full Text PDFThe presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac.
View Article and Find Full Text PDFThis study unveils CN, a new material that serves as an excellent reinforcement to enhance the mechanical properties of aluminum using a molecular dynamics simulation method. Results show that the CN nanosheets greatly improve the mechanical properties of aluminum-based nanocomposites. With only 1.
View Article and Find Full Text PDFOctadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material. A molecular dynamics study was conducted to investigate the effects of adding graphene and a boron nitride nanosheet on the thermal and structural properties of octadecane paraffin. The PCFF force field for paraffin, AIREBO potential for graphene, Tersoff potential for the boron nitride nanosheet, and Lennard-Jones potential for the van der Waals interaction between the nanoparticles and -alkanes were used.
View Article and Find Full Text PDFEnzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of "enzymatic treatment" has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks.
View Article and Find Full Text PDFIn this study, fabrication of a composite containing the ordinary Portland cement (OPC) and magnetite (FeO) micro/nanoparticles is reported. In the first stage, the cement paste samples with a fixed 0.2 wt.
View Article and Find Full Text PDFJ Mol Graph Model
November 2016
A multi-scale method is employed in this paper to conduct a virtual study of the high-strain behavior of single- and multi-layer graphene sheets and to investigate the design of related graphene-based devices. By bridging the length and time scales by combining the Molecular Dynamics and Finite Element methods together, a comprehensive multiscale model is developed to study the fascinating capabilities of single- and multi-layer graphene sheets in withstanding the impact of ultrafast projectiles. In order to contribute to future developments and innovations in this field, several quantitative and qualitative comparisons are also performed.
View Article and Find Full Text PDFMicrosc Res Tech
October 2016
In this paper, by applying the differential quadrature (DQ) method, a semi analytical model has been developed for atomic force microscope cantilever, and then by using the interfacial forces between the cantilever tip and imaged surfaces, a 2D model has been extracted for imaging nano-sized fine samples. By employing the present model, several simple and standard samples have been imaged, and finally the effects of the microcantilever's structural damping and its stiffness on the imaging results have been investigated. It has been observed that, through the control of damping, the quality of the acquired images is considerably improved.
View Article and Find Full Text PDF