Three-dimensional gradient-echo (3D-GRE) sequences provide isotropic or nearly isotropic 3D images, leading to better visualization of smaller structures, compared to two-dimensional (2D) sequences. The aim of this study was to prospectively compare 2D and 3D-GRE sequences in terms of key imaging metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), glenohumeral joint space, image quality, artifacts, and acquisition time in shoulder joint images, using 1.5-T MRI scanner.
View Article and Find Full Text PDFAims: Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches.
View Article and Find Full Text PDFPurpose: This study is aimed at evaluating the efficacy of the gradient-spin echo- (GraSE-) based short tau inversion recovery (STIR) sequence (GraSE-STIR) in cardiovascular magnetic resonance (CMR) imaging compared to the conventional turbo spin echo- (TSE-) based STIR sequence, specifically focusing on image quality, specific absorption rate (SAR), and image acquisition time.
Methods: In a prospective study, we examined forty-four normal volunteers and seventeen patients referred for CMR imaging using conventional STIR and GraSE-STIR techniques. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), image quality, signal intensity (SI) ratio, SAR, and image acquisition time were compared between both sequences.
Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development.
View Article and Find Full Text PDFTargeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging.
View Article and Find Full Text PDFBackground: T mapping is a valuable technique in cardiac MR imaging that offers insights into the microstructural characteristics of myocardial tissue. However, it was shown that myocardial T relaxation times (T) measured vary significantly depending on sequence, sequence parameters, and field strength.
Purpose: To assess T variability and image quality in cardiac T maps using four variants of the gradient-spin echo (GraSE) sequence, having different methods of blood signal suppression (double inversion recovery (DIR) and improved motion-sensitized driven equilibrium (iMSDE) and with and without the addition of fat saturation (FS).
Nanomaterial-based drug delivery has opened new horizons in cancer therapy. This study aimed to investigate the in vitro and in vivo anti-cancer effects of a hyaluronic acid (HA)-targeted nanocarrier based on hollow silica nanoparticles (HSNPs), gated with peptide nucleic acid (PNA) and ATP aptamer (ATP) and loaded with doxorubicin (DOX). After formulation of a smart drug delivery nanosystem (HSNPs/DOX/ATP/PNA/HA), drug release, cytotoxicity, uptake, and in vivo anti-tumor properties were studied.
View Article and Find Full Text PDFCD44 is a cell matrix adhesion molecule overexpressed on the cell surfaces of the major cancers. CD44 as a cancer-related biomarker has an essential role in the invasion and metastasis of cancer. The detection and quantification of CD44 can provide essential information useful for clinical cancer diagnosis.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2021
In this study, we developed a peptide-based non-viral carrier decorated with aptamer to overcome the specific gene delivery barriers. The carrier (KLN/Apt) was designed to contain multiple functional segments, including 1) two tandem repeating units of low molecular weight protamine (LMWP) to condense DNA into stable nanosize particles and protect it from enzymatic digestion, 2) AS1411 aptamer as targeting moiety to target nucleolin and promote carrier internalization, 3) a synthetic pH-sensitive fusogenic peptide (KALA) for disrupting endosomal membranes and enhancing cytosol escape of the nanoparticles, and 4) a nuclear localization signal (NLS) for active cytoplasmic trafficking and nuclear delivery of DNA. The obtained results revealed the developed carrier capacity in terms of specific cell targeting, overcoming cellular gene delivery barriers, and mediating efficient gene transfection.
View Article and Find Full Text PDFCurcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers.
View Article and Find Full Text PDFRecently, the siderophores have opened new horizons in nanomedicine. The current study aimed to design a theranostic platform based on superparamagnetic iron oxide nanoparticles-pyoverdine (SPION/PVD) conjugates bound to MUC1 aptamer (MUC1) and loaded with doxorubicin (DOX) as an anti-cancer agent. The SPION/PVD complex was covalently conjugated to MUC1 and loaded with DOX to prepare a targeted drug delivery system (SPION/PVD/MUC1/DOX).
View Article and Find Full Text PDFPurpose: Oxidative stress (OS) is associated with several chronic complications and diseases. The use of coenzyme Q10 (CoQ10) as an adjuvant treatment with routine clinical therapy against metabolic diseases has shown to be beneficial. However, the impact of CoQ10 as a preventive agent against OS has not been systematically investigated.
View Article and Find Full Text PDFBackground: Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC).
View Article and Find Full Text PDFDiabetic wound characterizes with a delayed repair as a result of the lack of neoangiogenesis and the excess of inflammation. Natural products such as curcumin have shown great promises in their regulatory potentials on inflammation and angiogenesis. However, natural agents have several shortages in their bioavailability and stability when used in vivo.
View Article and Find Full Text PDFOwing to the importance of multifunctional theranostics as promising systems to overcome key problems of conventional cancer therapy, in this study a multifunctional metal-organic framework-based (MOF) theranostic system was prepared and applied as intelligent theranostic systems in cancer. Iron-based MOF, MIL-88B, in a multi-faceted shape was initially prepared. Curcumin (Cur) was then loaded into the pores of MIL and folic acid-chitosan conjugate (FC) was finally coated on the surface of the carrier to accomplish cancer-specific targeting properties.
View Article and Find Full Text PDFMore recently, detection of circulating tumor cells (CTCs) has been considered as an appealing prognostic and diagnostic approach for cancer patients. CTCs as a type of tumor-derived cells are secreted by the tumor and released into the blood circulation. Since the migration of CTCs is an early event in cancer progression, patients who still have tumor-free lymph nodes have to be well examined for the CTCs presence in their blood circulation.
View Article and Find Full Text PDFA nanotheranostic system was developed using α-lactalbumin along with FeO nanoparticles as an magnetic resonance imaging (MRI) contrast agent for medical imaging and doxorubicin as the therapeutic agent. α-lactalbumin was precipitated and cross-linked using poly(ethylene glycol) and glutaraldehyde. Besides, polyethylenimine was applied to increase the number of amine groups during cross-linking between α-lactalbumin and FeO nanoparticles.
View Article and Find Full Text PDFIn this work, a multifunctional magnetic Bio-Metal-Organic Framework (FeO@Bio-MOF) coated with folic acid-chitosan conjugate (FC) was successfully prepared for tumor-targeted delivery of curcumin (CUR) and 5-fluorouracil (5-FU) simultaneously. Bio-MOF nanocomposite based on CUR as organic linker and zinc as metal ion was prepared by hydrothermal method in the presence of amine-functionalized FeO magnetic nanoparticles (FeO@NH MNPs). 5-FU was loaded in the magnetic Bio-MOF and the obtained nanocarrier was then coated with FC network.
View Article and Find Full Text PDFObjectives: In this study, a novel targeted MRI contrast agent was developed by coating gadolinium oxide nanoparticles (GdO NPs) with β-cyclodextrin (CD)-based polyester and targeted by folic acid (FA).
Materials And Methods: The developed GdO@PCD-FA MRI contrast agent was characterized and evaluated in relaxivity, in vitro cell targeting, cell toxicity, blood compatibility and in vivo tumor MR contrast enhancement.
Results: In vitro cytotoxicity and hemolysis assays revealed that GdO@PCD-FA NPs have no significant cytotoxicity after 24 and 48 h against normal human breast cell line (MCF-10A) at concentration of up to 50 µg Gd/mL and have high blood compatibility at concentration of up to 500 µg Gd/mL.
Mucin 1 protein (MUC1) is a membrane-associated glycoprotein overexpressed in the majority of human malignancies and considered as a predominant protein biomarker in cancers. Owing to the crucial role of MUC1 in cancer dissemination and metastasis, detection and quantification of this biomarker is of great importance in clinical diagnostics. Today, there exist a wide variety of strategies for the determination of various types of disease biomarkers, especially MUC1.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are the most frequent mortality cause in many countries. The acute myocardial infraction (AMI) is one of the most common types of CVDs. Cardiac troponin I (cTnI) and cardiac troponin T (cTnT) as predominant cardiac infarction biomarkers considered as "gold standard" for diagnosis of acute myocardial infraction (AMI).
View Article and Find Full Text PDFSiderophores are small organic compounds secreted by microorganisms under iron-depleted conditions which enhance the uptake of iron. Siderophores can play vital roles in ecology, agriculture, bioremediation, biosensor, and medicine. In recent years, the concept of siderophore-based biosensing devices has opened new horizons in high precision detection of various metal ions especially the iron, microorganisms, phosphopeptides, antibiotics as well pesticides.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is a key regulator of vascular formation and a predominant protein biomarker in cancer angiogenesis. Owing to its crucial roles in the cancer metastasis, VEGF detection and quantification is of great importance in clinical diagnostics. Today, there exist a wide variety of detection strategies for identifying many types of disease biomarkers, especially for VEGF.
View Article and Find Full Text PDF