An automated computer-aided approach might aid radiologists in diagnosing breast cancer at a primary stage. This study proposes a novel decision support system to classify breast tumors into benign and malignant based on clinically important features, using ultrasound images. Nine handcrafted features, which align with the clinical markers used by radiologists, are extracted from the region of interest (ROI) of ultrasound images.
View Article and Find Full Text PDFSign Language Recognition (SLR) is crucial for enabling communication between the deaf-mute and hearing communities. Nevertheless, the development of a comprehensive sign language dataset is a challenging task due to the complexity and variations in hand gestures. This challenge is particularly evident in the case of Bangla Sign Language (BdSL), where the limited availability of depth datasets impedes accurate recognition.
View Article and Find Full Text PDFBiomedicines
May 2023
Diabetic retinopathy (DR) is the foremost cause of blindness in people with diabetes worldwide, and early diagnosis is essential for effective treatment. Unfortunately, the present DR screening method requires the skill of ophthalmologists and is time-consuming. In this study, we present an automated system for DR severity classification employing the fine-tuned Compact Convolutional Transformer (CCT) model to overcome these issues.
View Article and Find Full Text PDF