Publications by authors named "Sadashige Matsuo"

The Josephson junction (JJ) is an essential element of superconducting (SC) devices for both fundamental and applied physics. The short-range coherent coupling of two adjacent JJs forms Andreev molecule states (AMSs), which provide a new ingredient to engineer exotic SC phenomena such as topological SC states and Andreev qubits. Here we provide tunneling spectroscopy measurements on a device consisting of two electrically controllable planar JJs sharing a single SC electrode.

View Article and Find Full Text PDF

A Josephson junction (JJ) is a key device for developing superconducting circuits, wherein a supercurrent in the JJ is controlled by the phase difference between the two superconducting electrodes. When two JJs sharing one superconducting electrode are coherently coupled and form the Andreev molecules, a supercurrent of one JJ is expected to be nonlocally controlled by the phase difference of another JJ. Here, we evaluate the supercurrent in one of the coupled two JJs as a function of local and nonlocal phase differences.

View Article and Find Full Text PDF

We report on experimental observations of charge-spin cooperative dynamics of two-electron states in a GaAs double quantum dot located in a nonequilibrium phonon environment. When the phonon energy exceeds the lowest excitation energy in the quantum dot, the spin-flip rate of a single electron strongly enhances. In addition, originated from the spatial gradient of phonon density between the dots, the parallel spin states become more probable than the antiparallel ones.

View Article and Find Full Text PDF

The Josephson junction of a strong spin-orbit material under a magnetic field is a promising Majorana fermion candidate. Supercurrent enhancement by a magnetic field has been observed in the InAs nanowire Josephson junctions and assigned to a topological transition. In this work we observe a similar phenomenon but discuss the nontopological origin by considering the trapping of quasiparticles by vortices that penetrate the superconductor under a finite magnetic field.

View Article and Find Full Text PDF
Article Synopsis
  • Cooper pair splitting (CPS) creates nonlocal correlations between normal conductors connected to a superconductor, which is essential for generating entangled electron pairs and studying Majorana fermions without needing a magnetic field.
  • This study focuses on CPS using a Josephson junction made from gate-tunable ballistic InAs double nanowires, where results show that interwire superconductivity is stronger than intrawire superconductivity.
  • The findings reveal that the CPS effect is linked to one-dimensional electron-electron interactions, providing a foundation for advancing CPS techniques and engineering Majorana fermions in similar nanowire setups.
View Article and Find Full Text PDF

The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi.

View Article and Find Full Text PDF

Quantum entanglement between different forms of qubits is an indication of the universality of quantum mechanics. Entanglement transfer between light and matter, especially photon and spin, has long been studied as the central concept, but it remains technically challenging for single photons and spins. In this paper, we show paired generation of a single electron in a GaAs quantum dot and a single photon from a single polarization-entangled photon pair.

View Article and Find Full Text PDF

We performed noise measurements for a Corbino disk in the quantum Hall effect breakdown regime. We investigated two Corbino-disk-type devices with different sizes and observed that the Fano factor increases when the length between the contacts doubles. This observation is consistent with the avalanche picture suggested by the bootstrap electron heating model.

View Article and Find Full Text PDF

Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p-n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear.

View Article and Find Full Text PDF

Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs.

View Article and Find Full Text PDF