Publications by authors named "Sadanand Gaikwad"

Background: Dendritic cells (DCs) rendered suppressive by treatment with mitomycin C and loaded with the autoantigen myelin basic protein demonstrated earlier their ability to prevent experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). This provides an approach for prophylactic vaccination against autoimmune diseases. For clinical application such DCs are difficult to generate and autoantigens hold the risk of exacerbating the disease.

View Article and Find Full Text PDF

Disruption of the blood-brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins.

View Article and Find Full Text PDF

Microglial cell function receives increasing interest. To date, the majority of experiments are performed by using immortalized microglia-like cells or primary microglia prepared from pre- or postnatal rodent brain. As those may not adequately reflect the microglial biology in the adult brain, this protocol advocates a procedure which allows for the isolation, purification, and subsequent analysis of microglial cells.

View Article and Find Full Text PDF

The signal regulatory protein-beta1 (SIRPbeta1) is a DAP12-associated transmembrane receptor expressed in a subset of hematopoietic cells. Recently, it was shown that peritoneal macrophages express SIRPbeta1, which positively regulated phagocytosis. Here, we found that SIRPbeta1 was up-regulated and acted as a phagocytic receptor on microglia in amyloid precursor protein J20 (APP/J20) transgenic mice and in Alzheimer's disease (AD) patients.

View Article and Find Full Text PDF