Publications by authors named "Sadaie M"

Austocystin D is a natural compound that induces cytochrome P450 (CYP) monooxygenase-dependent DNA damage and growth inhibition in certain cancer cell lines. Cancer cells exhibiting higher sensitivity to austocystin D often display elevated CYP2J2 expression. However, the essentiality and the role of CYP2J2 for the cytotoxicity of this compound remain unclear.

View Article and Find Full Text PDF

As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19.

View Article and Find Full Text PDF

The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage.

View Article and Find Full Text PDF

Background: aVR lead is often neglected in routine clinical practice largely because of its undefined clinical utility specifications. Nevertheless, positive T-wave in aVR lead has been reported to be associated with poor clinical outcomes in some cardiovascular diseases. This study aimed to prospectively investigate the prognostic value and clinical utility of T-wave amplitude in aVR lead in patients with acute ST-elevation myocardial infarction (STEMI).

View Article and Find Full Text PDF

The possibility of human reinfection with SARS-CoV-2, the coronavirus responsible for COVID-19, has not previously been thoroughly investigated. Although it is generally believed that virus-specific antibodies protect against COVID-19 pathogenesis, their duration of function and temporal activity remain unknown. Contrary to media reports that people retain protective antibody responses for a few months, science does not exclude reinfection and disease relapse shortly after initiating all immune responses during the primary onset of COVID-19.

View Article and Find Full Text PDF

Many studies have investigated the benefits of androgen therapy and neurosteroids in aging men, while concerns remain about the potential associations of exogenous steroids and incidents of cerebrovascular events and ischemic stroke (IS). Testosterone is neuroprotective, neurotrophic and a potent stimulator of neuroplasticity. These benefits are mediated primarily through conversion of a small amount of testosterone to estradiol by the catalytic activity of estrogen synthetase (aromatase cytochrome P450 enzyme).

View Article and Find Full Text PDF

Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P.

View Article and Find Full Text PDF

Background: We have previously reported that immunization with GRA2 antigen of Toxoplasma gondii induces protective immunity in CBA/J (H2k) and BALB/c mice (H2d). We aimed to examine whether immunization of a distinct strain of rodent with recombinant dense granule antigens (GRA2) combined with monophosphorryl lipid A (MPL) adjuvant elicits protective immune response against T. gondii.

View Article and Find Full Text PDF

Among imaging techniques, fluorescence microscopy is a unique method to noninvasively image individual molecules in whole cells. If the three-dimensional spatial precision is improved to the angstrom level, various molecular arrangements in the cell can be visualized on an individual basis. We have developed a cryogenic reflecting microscope with a numerical aperture of 0.

View Article and Find Full Text PDF

Cellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required.

View Article and Find Full Text PDF

Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays.

View Article and Find Full Text PDF

Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized.

View Article and Find Full Text PDF

Senescence is a stress-responsive form of stable cell cycle exit. Senescent cells have a distinct gene expression profile, which is often accompanied by the spatial redistribution of heterochromatin into senescence-associated heterochromatic foci (SAHFs). Studying a key component of the nuclear lamina lamin B1 (LMNB1), we report dynamic alterations in its genomic profile and their implications for SAHF formation and gene regulation during senescence.

View Article and Find Full Text PDF

Heparin and heparan sulfate, a variety of negatively charged highly sulfated polysaccharides, can influence the biological functions of human bone morphogenetic proteins (BMPs). Notably, BMPs control numerous essential biological activities and processes, such as bone formation, bone turnover, brain development, tumor initiation, and progression. BMPs also enhance the repair of bone tissue injuries and are used in bone remodeling alongside implantable prosthetic devices.

View Article and Find Full Text PDF

Lysine methylation is one of the most common protein modifications. Although lysine methylation of histones has been extensively studied and linked to gene regulation, that of non-histone proteins remains incompletely understood. Here, we show a novel regulatory role of ribosomal protein methylation.

View Article and Find Full Text PDF

There is an increasing interest in nootropic drugs for the treatment of CNS disorders. Since the last meta-analysis of the clinical efficacy of piracetam, more information has accumulated. The primary objective of this systematic survey is to evaluate the clinical outcomes as well as the scientific literature relating to the pharmacology, pharmacokinetics/pharmacodynamics, mechanism of action, dosing, toxicology and adverse effects of marketed and investigational drugs.

View Article and Find Full Text PDF

As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway.

View Article and Find Full Text PDF

Heterochromatin protein 1 (HP1) recruits various effectors to heterochromatin for multiple functions, but its regulation is unclear. In fission yeast, a HP1 homolog Swi6 recruits SHREC, Epe1, and cohesin, which are involved in transcriptional gene silencing (TGS), transcriptional activation, and sister chromatid cohesion, respectively. We found that casein kinase II (CK2) phosphorylated Swi6.

View Article and Find Full Text PDF

Heterochromatin protein 1 (HP1) is a conserved chromosomal protein with important roles in chromatin packaging and gene silencing. In fission yeast, two HP1 family proteins, Swi6 and Chp2, are involved in transcriptional silencing at heterochromatic regions, but how they function and whether they act cooperatively or differentially in heterochromatin assembly remain elusive. Here, we show that both Swi6 and Chp2 are required for the assembly of fully repressive heterochromatin, in which they play distinct, nonoverlapping roles.

View Article and Find Full Text PDF

SET domain-containing methyltransferases post-translationally modify a variety of cellular proteins, such as histones, cytochrome c, ribulose-bisphosphate carboxylase/oxygenase, and ribosomal proteins. In the fission yeast Schizosaccharomyces pombe, at least 13 SET domain-containing proteins have been identified in the genome, four of which are involved in transcriptional regulation through their modification of histone tails. However, the roles played by the other SET domain proteins in cellular processes and their physiological substrates remain unresolved.

View Article and Find Full Text PDF

We employed a cantilever modified with a self-assembled monolayer (SAM) as a "hair-model-probe" for friction force microscopy (FFM) to measure friction acting between hair and hair-like surfaces. The "hair-model-probe" was prepared by forming a SAM of octadecanethiol on a gold-coated cantilever. We investigated frictional properties of human hair at both root and tip, and the dependency on applied load, influence of scanning direction, and local frictional distribution.

View Article and Find Full Text PDF

Background: The telomere is a specialized heterochromatin conserved among eukaryotes. However, it remains unknown how heterochromatin protein 1 (HP1) is recruited to telomeres and how telomere heterochromatin is formed. In fission yeast, the RNAi (RNA interference)-RITS (RNA-induced initiation of transcriptional silencing) pathway initiates heterochromatin formation at the centromeres and the silent mat locus by using common DNA sequences, the dg and dh repeats, as the templates for small interfering RNA (siRNA).

View Article and Find Full Text PDF

The chromodomain is a conserved motif that functions in the epigenetic control of gene expression. Here, we report the functional characterization of a chromodomain protein, Chp1, in the heterochromatin assembly in fission yeast. We show that Chp1 is a structural component of three heterochromatic regions-centromeres, the mating-type region, and telomeres-and that its localization in these regions is dependent on the histone methyltransferase Clr4.

View Article and Find Full Text PDF