Publications by authors named "Sadahiko Itoh"

This study investigated the occurrence of Legionella spp. in a chlorinated drinking water distribution system (DWDS), focusing on their community compositions and association with physicochemical water quality. Water samples were collected throughout the DWDS, covering from the treated water reservoir to distal ends.

View Article and Find Full Text PDF

One effective option to minimize N-nitrosodimethylamine (NDMA) in finished drinking water is to identify and control its precursors. However, previous works to identify significant precursors use formation potential (FP) tests using high doses to assure the maximum NDMA formation rather than the NDMA formation in finished waters. In this study, we applied characteristic low treatment doses of ozone (O)-to-dissolved organic carbon (DOC) of target compounds of 0.

View Article and Find Full Text PDF

Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years.

View Article and Find Full Text PDF

Raphidophytes are flagellate unicellular algae that causes algal blooms in drinking water sources. In Japan, it was recently reported that the concentration of trichloroacetic acid (TCAA), a major chlorinated disinfection byproduct (DBP), increased dramatically in drinking water when the source water contained raphidophytes. Additionally, raphidophytes produced haloacetic acid (HAA) precursors, especially TCAA precursors, in high concentrations.

View Article and Find Full Text PDF

Soil aquifer treatment (SAT) has been widely applied for wastewater reclamation, which cooperates secondary treatment (i.e. AO process) and disinfection treatment (chlorination) in wastewater treatment plants (WWTPs), to remove organic matter.

View Article and Find Full Text PDF

This study investigated the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) fragmentation of 10 potent model ozone (O)-reactive -nitrosodimethylamine (NDMA) precursors bearing (CH)N-N or (CH)N-(SO)-N. Fragments (/ 61.0766, 60.

View Article and Find Full Text PDF

The presence of disinfection byproducts (DBPs) in drinking water is a major public health concern, and an effective strategy to limit the formation of these DBPs is to prevent their precursors. In silico prediction from chemical structure would allow rapid identification of precursors and could be used as a prescreening tool to prioritize testing. We present models using machine learning algorithms (i.

View Article and Find Full Text PDF

Haloacetic acids (HAAs) are a group of disinfection by-products formed by the reaction of dissolved organic matter (DOM) in source water and disinfectants in the drinking water treatment process. The formation of HAAs is known to be affected by several factors (e.g.

View Article and Find Full Text PDF

The accumulation of manganese in drinking water distribution systems often causes problems of "black water" in customers' taps. In this study, Mn accumulation onto a pipe surface under chlorinated conditions was investigated by focusing on the different states of Mn in the water. Lab-scale experiments suggested that the accumulation process included both the attachment of particulate Mn onto the surface (i.

View Article and Find Full Text PDF

During drinking water treatment processes, anthropogenic compounds act as important precursors of disinfection by-products such as haloacetic acids (HAAs). Several transformations in these precursors occur prior to the disinfection stage, such as partial biodegradation. We hypothesized that this partial biodegradation of anthropogenic compounds potentially affects their HAA formation potentials (HAAFPs).

View Article and Find Full Text PDF

Pollutant release and transfer registers (PRTRs) compounds accidentally released to source waters can be important precursors of the carcinogenic N-nitrosodimethylamine (NDMA) during drinking water treatment. The NDMA formation potentials (NDMAFPs) of 31 anthropogenic nitrogenous compounds with dimethylamine (DMA) moiety on the Japanese PRTR and the registered precursors listed by the Ministry of Health, Labour and Welfare of Japan are investigated as well as influencing factors (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • * SAT demonstrated strong removal rates for certain antibiotics (over 80%) but struggled with some amide pharmaceuticals, while effective biodegradation of specific carboxylic PPCPs was observed in both treatments.
  • * Findings suggest that SAT has broader biodegradation capabilities compared to AST, indicating that using both processes in sequence can enhance the removal efficiency of PPCPs in wastewater treatment.
View Article and Find Full Text PDF

For caffeine and its seven major metabolites (i.e., theobromine, theophylline, paraxanthine, 1-methylxanthine, 3-methylxanthine, 7-methylxanthine, and xanthine), an optimized analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for their detection in wastewater samples was developed in this study.

View Article and Find Full Text PDF

Anthropogenic compounds accidentally released to the environment could be important precursors of disinfection byproducts (DBPs) in drinking water treatment processes. In this study, the haloacetic acid formation potentials (HAAFPs) of 155 anthropogenic compounds listed on the Japanese pollutant release and transfer register (PRTR) system were evaluated. The results showed that phenolic and aromatic amine compounds were important HAA precursors, and chlorinated phenols showed high HAAFPs (>400 μg/mgC).

View Article and Find Full Text PDF

Soil aquifer treatment (SAT) is an alternative advanced treatment for wastewater reclamation, and it has the potential to control micropollutants including pharmaceuticals and personal care products (PPCPs). However, the relationship of operating conditions in SAT and removals of micropollutants was not clear. In this study, the effects of operating conditions on the removals of PPCPs were evaluated by using lab-scale columns and plant pilot-scale reactors under different operating conditions.

View Article and Find Full Text PDF

To identify the primary fraction of dissolved organic matter (DOM) responsible for chlorinous odor, waters treated by the conventional treatment (i.e., coagulation, flocculation, sedimentation and rapid sand filtration (RSF)) and ozonation were characterized by a fractionation technique prior to chlorination.

View Article and Find Full Text PDF

Inflammatory substances derived from indigenous bacteria in aquatic environments or water systems are of great concern. Lipopolysaccharides (LPSs), one of the major inflammatory substances in water, are usually identified using Limurus amoebocyte lysate (LAL) assay on the basis of their endotoxic activity, but endotoxin levels do not accurately represent their inflammatory potency in humans. In this investigation, the cellular endotoxin contents of pure-cultured bacteria/cyanobacteria, which are frequently detected in water sources and distribution systems, and of indigenous bacteria in a river and in biologically activated carbon (BAC) effluent, were investigated.

View Article and Find Full Text PDF

In this study, changes of microbial substrate metabolic patterns by BIOLOG assay were discussed through a sequential wastewater reuse process, which includes activated sludge and treated effluent in wastewater treatment plant and soil aquifer treatment (SAT), especially focussing on the surface sand layer in conjunction with the vadose zone, concerning sand depth. A SAT pilot-scale reactor, in which the height of packed sand was 237 cm (vadose zone: 17 cm and saturated zone 220 cm), was operated and fed continuously by discharged anaerobic-anoxic-oxic (A2O) treated water. Continuous water quality measurements over a period of 10 months indicated that the treatment performance of the reactor, such as 83.

View Article and Find Full Text PDF

Drinking water quality standard (DWQS) criteria for chemicals for which there is a threshold for toxicity are derived by allocating a fraction of tolerable daily intake (TDI) to exposure from drinking water. We conducted physiologically based pharmacokinetic model simulations for chloroform and have proposed an equation for total oral-equivalent potential intake via three routes (oral ingestion, inhalation, and dermal exposures), the biologically effective doses of which were converted to oral-equivalent potential intakes. The probability distributions of total oral-equivalent potential intake in Japanese people were estimated by Monte Carlo simulations.

View Article and Find Full Text PDF

The endotoxic activities of lipopolysaccharides (LPSs) in water samples are usually determined using a Limulus amoebocyte lysate (LAL) assay, but it is known that the determined activities do not always represent their inflammatory potency in humans. In this investigation, the inflammatory responses in three different human cells stimulated with Escherichia coli LPS, keratinocyte, CD14(+) monocyte, and THP-1, were compared using cytokine secretion as biomarkers to develop novel in vitro assay systems for detecting changes in inflammatory potencies of endotoxins in aquatic environment. Only THP-1 with 6-h stimulation showed dose-dependent responses in the range of normal endotoxin levels in aquatic environment.

View Article and Find Full Text PDF

There is considerable interest in minimizing the chlorine residual in Japan because of increasing complaints about a chlorinous odor in drinking water. However, minimizing the chlorine residual causes the microbiological water quality to deteriorate, and stricter control of biodegradable organics in finished water is thus needed to maintain biological stability during water distribution. In this investigation, an acceptable level of assimilable organic carbon (AOC) for biologically stable water with minimized chlorine residual was determined based on the relationship between AOC, the chlorine residual, and bacterial regrowth.

View Article and Find Full Text PDF

In Japan, customers' concerns about chlorinous odour in drinking water have been increasing. One promising approach for reducing chlorinous odour is the minimization of residual chlorine in water distribution, which requires stricter control of organics to maintain biological stability in water supply systems. In this investigation, the levels and seasonal changes of assimilable organic carbon (AOC) and its precursors in drinking water were surveyed to accumulate information on organics in terms of biological stability.

View Article and Find Full Text PDF

Changes in the toxicity in chlorinated water after chlorine addition were examined. For toxicity evaluation, the chromosomal aberration test and the transformation test were conducted as indexes of initiation activity and promotion activity, respectively, in the carcinogenesis process. Activity inducing chromosomal aberrations in chlorinated Lake Biwa water gradually decreased over time after chlorination.

View Article and Find Full Text PDF

In this study fluorometric methods using an alga, Closterium ehrenbergii, and a higher plant, Lemna gibba, were employed to evaluate the toxicity of sewage treatment plant (STP) effluent and its hydrophobic components. Fluorescence parameters such as the operational photosystem II quantum yield at steady state of electron transport, the nonphotochemical quenching, and the complementary area were modified in the presence of hydrophobic components, particularly with C. ehrenbergii.

View Article and Find Full Text PDF