Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.
View Article and Find Full Text PDFHeparin/heparan sulfate (HS) glycosaminoglycans are required for Slit-Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity.
View Article and Find Full Text PDFThe heterotrimeric laminins are a defining component of basement membranes and essential for tissue formation and function in all animals. The three short arms of the cross-shaped laminin molecule are composed of one chain each and their tips mediate the formation of a polymeric network. The structural basis for laminin polymerisation is unknown.
View Article and Find Full Text PDFThe polymerization of laminin into a cell-associated network--a key step in basement membrane assembly--is mediated by the laminin amino-terminal (LN) domains at the tips of the three short arms of the laminin αβγ-heterotrimer. The crystal structure of a laminin α5LN-LE1-2 fragment shows that the LN domain is a β-jelly roll with several elaborate insertions that is attached like a flower head to the stalk-like laminin-type epidermal growth factor-like tandem. A surface loop that is strictly conserved in the LN domains of all α-short arms is required for stable ternary association with the β- and γ-short arms in the laminin network.
View Article and Find Full Text PDFDystroglycan is a ubiquitously expressed cell adhesion protein. Its principal role has been determined as a component of the dystrophin-glycoprotein complex of muscle, where it constitutes a key component of the costameric cell adhesion system. To investigate more fundamental aspects of dystroglycan function in cell adhesion, we examined the role of dystroglycan in the dynamics and assembly of cellular adhesions in myoblasts.
View Article and Find Full Text PDFRecognition of the secreted protein Slit by transmembrane receptors of the Robo family provides important signals in the development of the nervous system and other organs, as well as in tumor metastasis and angiogenesis. Heparan sulfate (HS) proteoglycans serve as essential co-receptors in Slit-Robo signaling. Previous studies have shown that the second leucinerich repeat domain of Slit, D2, binds to the N-terminal immunoglobulin-like domains of Robo, IG1-2.
View Article and Find Full Text PDFThe laminin G-like (LG) domains of laminin-111, a glycoprotein widely expressed during embryogenesis, provide cell anchoring and receptor binding sites that are involved in basement membrane assembly and cell signaling. We now report the crystal structure of the laminin alpha1LG4-5 domains and provide a mutational analysis of heparin, alpha-dystroglycan, and galactosylsulfatide binding. The two domains of alpha1LG4-5 are arranged in a V-shaped fashion similar to that observed with laminin alpha2 LG4-5 but with a substantially different interdomain angle.
View Article and Find Full Text PDFSlit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear.
View Article and Find Full Text PDF