The most effective utilization of platinum (Pt) in fuel cells is achieved through the use of nanoparticles (NPs) that offer a large electrochemically active surface area. Because the stability of NPs decreases as they become smaller, their size and size distribution must be known in order to optimize the catalysts' durability, while offering high catalytic activity. Single particle inductively coupled plasma mass spectrometry (spICPMS) can quantify the mass of metallic NPs suspended in aqueous medium, which can then be converted into a size if the NPs' shape, density and composition are known.
View Article and Find Full Text PDF