The mechanical properties of red blood cells (RBCs) play key roles in their biological functions in microcirculation. In particular, RBCs must deform significantly to travel through microcapillaries with sizes comparable with or even smaller than their own. Although the dynamics of RBCs in microcapillaries have received considerable attention, the effect of membrane viscoelasticity has been largely overlooked.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major risk factor for development of neurodegenerative disorders later in life. Short, repetitive, mechanical impacts can lead to pathology that appears days or months later. The cells have a physical "memory" of mechanical events.
View Article and Find Full Text PDFThe cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix.
View Article and Find Full Text PDFAdherent cells utilize local environmental cues to make decisions on their growth and movement. We have previously shown that HEK293 cells grown on the fibronectin stripe patterns were elongated. Here we show that Piezo1 function is involved in cell spreading.
View Article and Find Full Text PDFThe cell nucleus responds to mechanical cues with changes in size, morphology and motility. Previous work has shown that external forces couple to nuclei through the cytoskeleton network, but we show here that changes in nuclear shape can be driven solely by calcium levels. Fluid shear stress applied to MDCK cells caused the nuclei to shrink through a Ca-dependent signaling pathway.
View Article and Find Full Text PDFSpider venom contains a number of small peptides that can control the gating properties of a wide range of ion channels with high affinity and specificity. These ion channels are responsible for coordination and control of many bodily functions such as transducing signals into sensory functions, smooth muscle contractions as well as serving as sensors in volume regulation. Hence, these peptides have been the topic of many research efforts in hopes that they can be used as biomedical therapeutics.
View Article and Find Full Text PDFPIEZO1 and PIEZO2 are mechanosensitive channels (MSCs) important for cellular function and mutations in them lead to human disorders. We examined how functional heteromers form between subunits of PIEZO1 using the mutants E2117K, E2117D, and E2117A. Homomers of E2117K do not conduct.
View Article and Find Full Text PDFTraumatic brain injury (TBI) elevates Abeta (Aβ) peptides in the brain and cerebral spinal fluid. Aβ peptides are amphipathic molecules that can modulate membrane mechanics. Because the mechanosensitive cation channel PIEZO1 is gated by membrane tension and curvature, it prompted us to test the effects of Aβ on PIEZO1.
View Article and Find Full Text PDFCell volume regulation is commonly analyzed with a model of a closed semipermeable membrane filled with impermeant mobile solutes and the Donnan Equilibrium is used to predict the hydrostatic pressure. This traditional model ignores the fact that most cells are filled with a crosslinked cytoskeleton that is elastic and can be stretched or compressed like a sponge with no obvious need to move mobile solutes. However, calculations show that under osmotic stress, the elastic energy of the cytoskeleton is far greater than the elastic energy of the membrane.
View Article and Find Full Text PDFDuchenne muscular dystrophy is a life-limiting muscle disease that has no current effective therapy. Despite mounting evidence that dysregulation of mechanosensitive ion channels is a significant contributor to dystrophy pathogenesis, effective pharmacologic strategies targeting these channels are lacking. GsMTx4, and its enantiomer GsMTx4-D, are peptide inhibitors of mechanosensitive channels with identical activity.
View Article and Find Full Text PDFIn controlled laboratory experiments with and without overlapping generations, we study the role of intergenerational altruism in public debt accumulation. Public debt is chosen by popular vote, pays for public goods, and is repaid with general taxes. We use an optimal control model to derive a theoretical benchmark.
View Article and Find Full Text PDFMechanical perturbations increase intracellular Ca in cells, but the coupling of mechanical forces to the Ca influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence.
View Article and Find Full Text PDFThe PIEZO channels, a family of mechanosensitive channels in vertebrates, feature a fast activation by mechanical stimuli (eg, membrane tension) followed by a slower inactivation. Although a medium-resolution structure of the trimeric form of PIEZO1 was solved by cryo-electron microscopy (cryo-EM), key structural changes responsible for the channel activation and inactivation are still unknown. Toward decrypting the structural mechanism of the PIEZO1 activation and inactivation, we performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (ie, normal mode analysis, flexibility and hotspot analysis, correlation analysis, and cryo-EM-based hybrid modeling and flexible fitting).
View Article and Find Full Text PDFAdherens junctions (AJs) are a key structural component for tissue organization and function. Under fluid shear stress, AJs exhibit dynamic assembly/disassembly, but how shear stress couples to AJs is unclear. In MDCK cells we measured simultaneously the forces in cytoskeletal α-actinin and the density and length of AJs using a genetically coded optical force sensor, actinin-sstFRET, and fluorescently labeled E-cadherin (E-cad).
View Article and Find Full Text PDFPiezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported.
View Article and Find Full Text PDFResearchers can investigate the mechanistic and molecular basis of many physiological phenomena in cells by analyzing the fundamental properties of single ion channels. These analyses entail recording single channel currents and measuring current amplitudes and transition rates between conductance states. Since most electrophysiological recordings contain noise, the data analysis can proceed by idealizing the recordings to isolate the true currents from the noise.
View Article and Find Full Text PDFGsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (MSCs). It has six lysine residues that have been proposed to affect membrane binding. We synthesized six analogs with single lysine-to-glutamate substitutions and tested them against Piezo1 channels in outside-out patches and independently measured lipid binding.
View Article and Find Full Text PDFWhile studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect.
View Article and Find Full Text PDFJ Mol Cell Cardiol
September 2016
GsMTx4 is a selective inhibitor of cationic mechanosensitive ion channels (MSCs) and has helped establish the role of MSCs in cardiac physiology. Inhomogeneous local mechanical stresses due to hypercontracture and swelling during ischemic reperfusion injury (IRI) likely induce elevated MSC activity that can contribute to cation imbalance. The aim of this study was to determine if the D enantiomer of GsMTx4 can act as a cardioprotectant in a mouse IRI model.
View Article and Find Full Text PDFMany papers have used fluorescent probe diffusion to infer membrane viscosity but the measurement is actually an assay of the free volume of the membrane. The free volume is also related to the membrane tension. Thus, changes in probe mobility refer equally well to changes in membrane tension.
View Article and Find Full Text PDFPIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment.
View Article and Find Full Text PDFThe auditory system is able to detect movement down to atomic dimensions. This sensitivity comes in part from mechanisms associated with gating of hair cell mechanoelectric transduction (MET) channels. MET channels, located at the tops of stereocilia, are poised to detect tension induced by hair bundle deflection.
View Article and Find Full Text PDFMechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer.
View Article and Find Full Text PDFCells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin.
View Article and Find Full Text PDF