In vitro and in vivo studies have shown that various strains of "viridans streptococci" (nongroupable alpha-hemolytic streptococci) inhabiting the oropharynx suppress the growth of gram-positive and gram-negative microorganisms. We conducted an inventory of the oropharyngeal flora from ambulatory asthma and chronic obstructive pulmonary disease (COPD) patients and a control group to examine the interaction between viridans streptococci and potential pathogens in vivo. In addition, the difference in colonization patterns of these bacteria was studied.
View Article and Find Full Text PDFPoly(A) tail removal is the first step in the degradation pathway for some mRNAs. The purified poly(A)-binding protein (PAB)-dependent poly(A) nuclease (PAN) from yeast removes mRNA poly(A) tails in vitro by a process similar to that observed in vivo. The exonucleolytic PAN degrades poly(A) and RNA bound by PAB, and can be activated by spermidine to degrade poly(A) in the absence of PAB.
View Article and Find Full Text PDFMessenger RNA translation initiation and cytoplasmic poly(A) tail shortening require the poly(A)-binding protein (PAB) in yeast. The PAB-dependent poly(A) ribonuclease (PAN) has been purified to near homogeneity from S. cerevisiae based upon its PAB requirement, and its gene has been cloned.
View Article and Find Full Text PDFCold-sensitive mutations in the SPB genes (spb1-spb7) of Saccharomyces cerevisiae suppress the inhibition of translation initiation resulting from deletion of the poly(A)-binding protein gene (PAB1). The SPB4 protein belongs to a family of adenosine triphosphate (ATP)-dependent RNA helicases. The aberrant production of 25S ribosomal RNA (rRNA) occurring in spb4-1 mutants or the deletion of SPB2 (RPL46) permits the deletion of PAB1.
View Article and Find Full Text PDFDepletion of the essential poly(A) binding protein (PAB) in S. cerevisiae by promoter inactivation or by the utilization of a temperature-sensitive mutation (pab1-F364L) results in the inhibition of translation initiation and poly(A) tail shortening. Reversion analysis of pab1-F364L yielded seven independent, extragenic cold-sensitive mutations (spb1-spb7) that also suppress a PAB1 deletion.
View Article and Find Full Text PDFThe poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo.
View Article and Find Full Text PDFA new and convenient spectroscopic method for measuring monovalent cation flux in cells is described. The technique is based on fluorescence quenching of an entrapped fluorophore (anthracene-1,5-dicarboxylic acid) by Cs+. A conventional fluorescence microscope can be used to measure the Cs+ flux.
View Article and Find Full Text PDFNuclear and cytoplasmic poly(A)-binding proteins have been purified from Saccharomyces cerevisiae, and antisera have been used to isolate a gene that encodes them. The gene occurs in a single copy on chromosome 5 and gives rise to a unique, unspliced 2.1 kb transcript.
View Article and Find Full Text PDFPolyadenylate-binding activity can be detected in eluates from sodium dodecyl sulfate gels by a nitrocellulose filter-binding assay. Nuclear extracts from rat liver show a single peak of binding activity at 50 to 55 kilodaltons; cytoplasmic extracts show a single peak at 70 to 80 kilodaltons, corresponding to a 75-kilodalton protein previously described. Similar results are obtained with yeast and mouse fibroblasts, indicating a high degree of conservation of both nuclear and cytoplasmic polyadenylate-binding proteins.
View Article and Find Full Text PDFThe development of a spectrophotometric stopped-flow method to measure ion flux in membrane vesicles in the millisecond to minute time region is described in detail. The technique is based on fluorescence quenching of an entrapped fluorophore (anthracene-1,5-disulfonic acid) by Cs+. The method has been applied to the measurement of acetylcholine-receptor-mediated ion flux in membrane vesicles prepared from the electric organs of both Electrophorus electricus and Torpedo californica.
View Article and Find Full Text PDFThe site of action of phencyclidine, a powerful and increasingly abused drug, in sympathetic nerve cells has not previously been identified. Here it is demonstrated that phencyclidine is a powerful, noncompetitive inhibitor of the nicotinic acetylcholine receptor in a sympathetic nerve cell line, PC-12. In the presence of 1 mM carbamoylcholine the rate of the receptor-controlled influx of 22Na+ is reduced by a factor of 2 by 0.
View Article and Find Full Text PDF