Background: The emergence of new SARS-CoV-2 variants poses a new challenge for the treatment of immunocompromised patients against COVID-19. In this context, high titer COVID-19 Convalescent Plasma (CCP) is one of the few available therapeutics for these patients. We have revisited the selection of CCP samples and its efficacy against Omicron XBB.
View Article and Find Full Text PDFBackground: Hepatitis C virus (HCV) infects nearly one-fourth of people with HIV (PWH). The role of direct-acting antivirals (DAAs) on immune activation in PWH and HCV is poorly understood.
Methods: We quantified plasma HCV RNA and CXCL10 in persons with HCV mono- versus HIV/HCV co-infection receiving Sofosbuvir-Velpatasvir.
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection.
View Article and Find Full Text PDFUnlabelled: Solid organ transplant recipients (SOTRs) suffer more frequent and more severe infections due to their compromised immune responses resulting from immunosuppressive treatments designed to prevent organ rejection. Pharmacological immunosuppression can adversely affect immune responses to vaccination. A cohort of kidney transplant recipients (KTRs) received their third dose of ancestral, monovalent COVID-19 vaccine in the context of a clinical trial and antibody responses to the vaccine strain, as well as to Omicron variants BA.
View Article and Find Full Text PDFRespiratory disease, attributed to influenza, respiratory syncytial virus (RSV), and SARS-CoV-2, was reported nationally during the 2023/2024 respiratory viral season. The emergence of novel SARS-CoV-2 variants was considered a significant factor contributing to the rise in COVID-19 cases. Data from the Johns Hopkins Hospital System (JHHS) showed that enterovirus/rhinovirus had also been circulating at high rates.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
October 2024
Background & Aims: Diarrhea occurs in up to 50% of cases of COVID-19. Nonetheless, the pathophysiologic mechanism(s) have not been determined.
Methods: This was examined using normal human enteroid monolayers exposed apically to live SARS-CoV-2 or non-replicating virus-like particles (VLPs) bearing the 4 SARS-CoV-2 structural proteins or irradiated virus, all of which bound and entered enterocytes.
BACKGROUNDCOVID-19 convalescent plasma (CCP) virus-specific antibody levels that translate into recipient posttransfusion antibody levels sufficient to prevent disease progression are not defined.METHODSThis secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double-blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup.
View Article and Find Full Text PDFPregnant patients are at greater risk of hospitalization with severe COVID-19 than non-pregnant people. This was a retrospective observational cohort study of remnant clinical specimens from patients who visited acute care hospitals within the Johns Hopkins Health System in the Baltimore, MD-Washington DC, area between October 2020 and May 2022. Participants included confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected pregnant people and matched non-pregnant people (the matching criteria included age, race/ethnicity, area deprivation index, insurance status, and vaccination status to ensure matched demographics).
View Article and Find Full Text PDFBackground: Previous studies have demonstrated enhanced efficacy of vaccine formulations that incorporate the chemokine macrophage inflammatory protein 3α (MIP-3α) to direct vaccine antigens to immature dendritic cells. To address the reduction in vaccine efficacy associated with a mutation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we have examined the ability of receptor-binding domain vaccines incorporating MIP-3α to sustain higher concentrations of antibody when administered intramuscularly (IM) and to more effectively elicit lung T-cell responses when administered intranasally (IN).
Methods: BALB/c mice aged 6-8 weeks were immunized intramuscularly or intranasally with DNA vaccine constructs consisting of the SARS-CoV-2 receptor-binding domain alone or fused to the chemokine MIP-3α.
As the only bionormal nanovesicle, exosomes have high potential as a nanovesicle for delivering vaccines and therapeutics. We show here that the loading of type-1 membrane proteins into the exosome membrane is induced by exosome membrane anchor domains, EMADs, that maximize protein delivery to the plasma membrane, minimize protein sorting to other compartments, and direct proteins into exosome membranes. Using SARS-CoV-2 spike as an example and EMAD13 as our most effective exosome membrane anchor, we show that cells expressing a spike-EMAD13 fusion protein produced exosomes that carry dense arrays of spike trimers on 50% of all exosomes.
View Article and Find Full Text PDFPatients with inflammatory arthritis (IA) are at increased risk of severe COVID-19 due to medication-induced immunosuppression that impairs host defenses. The aim of this study was to assess antibody and B cell responses to COVID-19 mRNA vaccination in IA patients receiving immunomodulatory therapies. Adults with IA were enrolled through the Johns Hopkins Arthritis Center and compared with healthy controls (HC).
View Article and Find Full Text PDFUnderstanding the mechanisms of antibody-mediated neutralization of SARS-CoV-2 is critical in combating the COVID-19 pandemic. Based on previous reports of antibody catalysis, we investigated the proteolysis of spike (S) by antibodies in COVID-19 convalescent plasma (CCP) and its contribution to viral neutralization. Quenched fluorescent peptides were designed based on S epitopes to sensitively detect antibody-mediated proteolysis.
View Article and Find Full Text PDFBackground: The true burden of COVID-19 in low- and middle-income countries remains poorly characterized, especially in Africa. Even prior to the availability of SARS-CoV-2 vaccines, countries in Africa had lower numbers of reported COVID-19 related hospitalizations and deaths than other regions globally.
Methods: Ugandan blood donors were evaluated between October 2019 and April 2022 for IgG antibodies to SARS-CoV-2 nucleocapsid (N), spike (S), and five variants of the S protein using multiplexed electrochemiluminescence immunoassays (MesoScale Diagnostics, Rockville, MD).
Background: The COVID-19 convalescent plasma (CCP) viral specific antibody levels that translate into recipient post-transfusion antibody levels sufficient to prevent disease progression is not defined.
Methods: This secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup.
Importance: Pregnant women are at increased risk of severe COVID-19, but the contribution of viral RNA load, the presence of infectious virus, and mucosal antibody responses remain understudied.
Objective: To evaluate the association of COVID-19 outcomes following confirmed infection with vaccination status, mucosal antibody responses, infectious virus recovery and viral RNA levels in pregnant compared with non-pregnant women.
Design: A retrospective observational cohort study of remnant clinical specimens from SARS-CoV-2 infected patients between October 2020-May 2022.
Background: Mathematical models explain how antivirals control viral infections. Hepatitis C virus (HCV) treatment results in at least 2 phases of decline in viremia. The first phase reflects clearance of rapidly produced virions.
View Article and Find Full Text PDFBackground: The variant of concern Omicron has become the sole circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant for the past several months. Omicron subvariants BA.1, BA.
View Article and Find Full Text PDFBackground: The variant of concern, Omicron, has become the sole circulating SARS-CoV-2 variant for the past several months. Omicron subvariants BA.1, BA.
View Article and Find Full Text PDFEnsuring SARS-CoV-2 diagnostics that can reliably detect emerging variants has been an ongoing challenge. Due to the rapid spread of the Omicron variant, point-of-care (POC) antigen tests have become more widely used. This study aimed at (i) comparing the analytical sensitivity (LOD) of 4 POC antigen assays, BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue, for the Omicron versus the Delta variant and (ii) verifying the reproducible detection of Omicron by the 4 antigen assays.
View Article and Find Full Text PDFLarge-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in the diagnostic laboratories is instrumental for real-time genomic surveillance. The extensive genomic, laboratory, and clinical data provide a valuable resource for understanding cases of reinfection versus prolonged RNA shedding and protracted infections. In this study, data from a total of 22,292 clinical specimens, positive by SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between March 11 2020 to September 23 2021, were used to identify patients with two or more positive results.
View Article and Find Full Text PDFBackground: The increase in SARS-CoV-2 infections in December 2021 was driven primarily by the Omicron variant, which largely displaced the Delta over a three-week span. Outcomes from infection with Omicron remain uncertain. We evaluated whether clinical outcomes and viral loads differed between Delta and Omicron infections during the period when both variants were co-circulating.
View Article and Find Full Text PDFBackground: The increase in SARS-CoV-2 infections in December 2021 in the United States was driven primarily by the Omicron variant which largely displaced the Delta over a three week span. Outcomes from infection with the Omicron remain uncertain. We evaluate whether clinical outcomes and viral loads differ between Delta and Omicron infections during the period when both variants were co-circulating.
View Article and Find Full Text PDFBenchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant.
View Article and Find Full Text PDFBackground: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) B.1.617.
View Article and Find Full Text PDFBackground: The emerging SARS-CoV-2 variant of concern (VOC) B.1.6.
View Article and Find Full Text PDF